ترغب بنشر مسار تعليمي؟ اضغط هنا

Some properties of Zumkeller numbers and $k$-layered numbers

75   0   0.0 ( 0 )
 نشر من قبل Manjil Saikia
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalizing the concept of a perfect number is a Zumkeller or integer perfect number that was introduced by Zumkeller in 2003. The positive integer $n$ is a Zumkeller number if its divisors can be partitioned into two sets with the same sum, which will be $sigma(n)/2$. Generalizing even further, we call $n$ a $k$-layered number if its divisors can be partitioned into $k$ sets with equal sum. In this paper, we completely characterize Zumkeller numbers with two distinct prime factors and give some bounds for prime factorization in case of Zumkeller numbers with more than two distinct prime factors. We also characterize $k$-layered numbers with two distinct prime factors and even $k$-layered numbers with more than two distinct odd prime factors. Some other results concerning these numbers and their relationship with practical numbers and Harmonic mean numbers are also discussed.



قيم البحث

اقرأ أيضاً

Nonextensive statistical mechanics has been a source of investigation in mathematical structures such as deformed algebraic structures. In this work, we present some consequences of $q$-operations on the construction of $q$-numbers for all numerical sets. Based on such a construction, we present a new product that distributes over the $q$-sum. Finally, we present different patterns of $q$-Pascals triangles, based on $q$-sum, whose elements are $q$-numbers.
In this paper, we derive some identities involving special numbers and moments of random variables by using the generating functions of the moments of certain random variables. Here the related special numbers are Stirling numbers of the first and se cond kinds, degenerate Stirling numbers of the first and second kinds, derangement numbers, higher-order Bernoulli numbers and Bernoulli numbers of the second kind.
In this note, we extend the definition of multiple harmonic sums and apply their stuffle relations to obtain explicit evaluations of the sums $R_n(p,t)=sum olimits_{m=0}^n m^p H_m^t$, where $H_m$ are harmonic numbers. When $tle 4$ these sums were fir st studied by Spiess around 1990 and, more recently, by Jin and Sun. Our key step first is to find an explicit formula of a special type of the extended multiple harmonic sums. This also enables us to provide a general structural result of the sums $R_n(p,t)$ for all $tge 0$.
170 - Victor J. W. Guo 2020
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $ $ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ sum_{k=0}^{p-1}(-1)^k (3k+1)frac{(frac{1}{2})_k^3}{k!^3} 2^{3k} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ sum_{k=0}^{(p-1)/2}frac{(frac{1}{2})_k^2}{k!^2} equiv (-1)^{(p-1)/2}+p^2 E_{p-3} pmod{p^3}. $$
87 - Taekyun Kim , Dae San Kim 2018
We introduce the degenerate Bernoulli numbers of the second kind as a degenerate version of the Bernoulli numbers of the second kind. We derive a family of nonlinear differential equations satisfied by a function closely related to the generating fun ction for those numbers. We obtain explicit expressions for the coefficients appearing in those differential equations and the degenerate Bernoulli numbers of the second kind. In addition, as an application and from those differential equations we have an identity expressing the degenerate Bernoulli numbers of the second kind in terms of those numbers of higher-orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا