ترغب بنشر مسار تعليمي؟ اضغط هنا

Sets of Exact Approximation Order by Complex rational numbers

119   0   0.0 ( 0 )
 نشر من قبل Yubin He
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a nonincreasing function $psi$, let $textrm{Exact}(psi)$ be the set of complex numbers that are approximable by complex rational numbers to order $psi$ but to no better order. In this paper, we obtain the Hausdorff dimension and packing dimension of $textrm{Exact}(psi)$ when $psi(x)=o(x^{-2})$. We also prove that the lower bound of the Hausdorff dimension is greater than $2-tau/(1-2tau)$ when $tau=limsup_{xtoinfty}psi(x)x^2$ small enough.



قيم البحث

اقرأ أيضاً

136 - Yann Bugeaud , Guo-Niu Han 2021
Let $b ge 2$ and $ell ge 1$ be integers. We establish that there is an absolute real number $K$ such that all the partial quotients of the rational number $$ prod_{h = 0}^ell , (1 - b^{-2^h}), $$ of denominator $b^{2^{ell+1} - 1}$, do not exceed $exp(K (log b)^2 sqrt{ell} 2^{ell/2})$.
587 - John Abbott 2013
In this paper we present two efficient methods for reconstructing a rational number from several residue-modulus pairs, some of which may be incorrect. One method is a natural generalization of that presented by Wang, Guy and Davenport in cite{WGD198 2} (for reconstructing a rational number from textit{correct} modular images), and also of an algorithm presented in cite{Abb1991} for reconstructing an textit{integer} value from several residue-modulus pairs, some of which may be incorrect.
110 - Jori Merikoski 2021
We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic formulas, we show that less arithmetic info rmation is required to prove non-trivial lower bounds. As an application of our method, assuming the existence of infinitely many exceptional characters we show that there are infinitely many primes of the form $a^2+b^8$.
Natural numbers can be divided in two non-overlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blo cks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramers conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramers version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.
We give an expression of polynomials for higher sums of powers of integers via the higher order Bernoulli numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا