ﻻ يوجد ملخص باللغة العربية
In this paper, we study the quantum dynamics of a one degree-of-freedom (DOF) Hamiltonian that is a normal form for a saddle node bifurcation of equilibrium points in phase space. The Hamiltonian has the form of the sum of kinetic energy and potential energy. The bifurcation parameter is in the potential energy function and its effect on the potential energy is to vary the depth of the potential well. The main focus is to evaluate the effect of the depth of the well on the quantum dynamics. This evaluation is carried out through the computation of energy eigenvalues and eigenvectors of the time-independent Schrodinger equations, expectation values and position uncertainties for position coordinate, and Wigner functions.
Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale--Williams solenoid in stroboscopic Poincar{e} map of two alternately excited non-autonomous van der Pol oscillators.
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in
For a power system operating in the vicinity of the power transfer limit of its transmission system, effect of stochastic fluctuations of power loads can become critical as a sufficiently strong such fluctuation may activate voltage instability and l
The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a s
We identify a new parameter that controls the localization length in a driven quantum system. This parameter results from an additional quantum degree of freedom. The center-of-mass motion of a two-level ion stored in a Paul trap and interacting with