ﻻ يوجد ملخص باللغة العربية
For a power system operating in the vicinity of the power transfer limit of its transmission system, effect of stochastic fluctuations of power loads can become critical as a sufficiently strong such fluctuation may activate voltage instability and lead to a large scale collapse of the system. Considering the effect of these stochastic fluctuations near a codimension 1 saddle-node bifurcation, we explicitly calculate the autocorrelation function of the state vector and show how its behavior explains the phenomenon of critical slowing-down often observed for power systems on the threshold of blackout. We also estimate the collapse probability/mean clearing time for the power system and construct a new indicator function signaling the proximity to a large scale collapse. The new indicator function is easy to estimate in real time using PMU data feeds as well as SCADA information about fluctuations of power load on the nodes of the power grid. We discuss control strategies leading to the minimization of the collapse probability.
In this paper, we study the quantum dynamics of a one degree-of-freedom (DOF) Hamiltonian that is a normal form for a saddle node bifurcation of equilibrium points in phase space. The Hamiltonian has the form of the sum of kinetic energy and potentia
Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale--Williams solenoid in stroboscopic Poincar{e} map of two alternately excited non-autonomous van der Pol oscillators.
The size distributions of power outages are shown to depend on the stress, or the proximity of the load of an electrical grid to complete breakdown. Using the data for the U.S. between 2002-2017, we show that the outage statistics are dependent on th
Monitoring and modelling the power grid frequency is key to ensuring stability in the electrical power system. Many tools exist to investigate the detailed deterministic dynamics and especially the bulk behaviour of the frequency. However, far less a
Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as univer