ﻻ يوجد ملخص باللغة العربية
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Greens functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term
We derive asymptotic freedom and the $SU(3)$ Yang-Mills $beta$-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size $s$ is introduced. Effective particles in the Foc
In this paper, we study the quantum dynamics of a one degree-of-freedom (DOF) Hamiltonian that is a normal form for a saddle node bifurcation of equilibrium points in phase space. The Hamiltonian has the form of the sum of kinetic energy and potentia
The multiplicity distribution of the gluons produced at the high energy is evaluated in BFKL approach. The distribution has Poisson form that can explain experimentally observed KNO scaling.
We construct solutions of analogues of the nonstationary Schrodinger equation corresponding to the polynomial isomonodromic Hamiltonian Garnier system with two degrees of freedom. This solutions are obtained from solutions of systems of linear ordina