ﻻ يوجد ملخص باللغة العربية
Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale--Williams solenoid in stroboscopic Poincar{e} map of two alternately excited non-autonomous van der Pol oscillators. The transition occupies a narrow but finite parameter interval and progresses in such way that periodic orbits constituting a skeleton of the attractor undergo saddle-node bifurcation events involving partner orbits from the attractor and from a non-attracting invariant set, which forms together with its stable manifold a basin boundary of the attractor.
One-dimensional Bernoulli mapping with hole is suggested to describe the regularities of the appearance of a chaotic set under the saddle-node scenario of the birth of the Smale--Williams hyperbolic attractor. In such a mapping, a non-trivial chaotic
In this paper, we study the quantum dynamics of a one degree-of-freedom (DOF) Hamiltonian that is a normal form for a saddle node bifurcation of equilibrium points in phase space. The Hamiltonian has the form of the sum of kinetic energy and potentia
For a power system operating in the vicinity of the power transfer limit of its transmission system, effect of stochastic fluctuations of power loads can become critical as a sufficiently strong such fluctuation may activate voltage instability and l
The inner structure of the attractor appearing when the Varley-Gradwell-Hassell population model bifurcates from regular to chaotic behaviour is studied. By algebraic and geometric arguments the coexistence of a continuum of neutrally stable limit cy
The system in which a small rigid ball is bouncing repeatedly on a massive at table vibrating vertically, so-called the bouncing ball system, has been widely studied. Under the assumption that the table is vibrating with a piecewise polynomial functi