ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimax Estimation of Partially-Observed Vector AutoRegressions

89   0   0.0 ( 0 )
 نشر من قبل Guillaume Dalle
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English
 تأليف Guillaume Dalle




اسأل ChatGPT حول البحث

To understand the behavior of large dynamical systems like transportation networks, one must often rely on measurements transmitted by a set of sensors, for instance individual vehicles. Such measurements are likely to be incomplete and imprecise, which makes it hard to recover the underlying signal of interest.Hoping to quantify this phenomenon, we study the properties of a partially-observed state-space model. In our setting, the latent state $X$ follows a high-dimensional Vector AutoRegressive process $X_t = theta X_{t-1} + varepsilon_t$. Meanwhile, the observations $Y$ are given by a noise-corrupted random sample from the state $Y_t = Pi_t X_t + eta_t$. Several random sampling mechanisms are studied, allowing us to investigate the effect of spatial and temporal correlations in the distribution of the sampling matrices $Pi_t$.We first prove a lower bound on the minimax estimation error for the transition matrix $theta$. We then describe a sparse estimator based on the Dantzig selector and upper bound its non-asymptotic error, showing that it achieves the optimal convergence rate for most of our sampling mechanisms. Numerical experiments on simulated time series validate our theoretical findings, while an application to open railway data highlights the relevance of this model for public transport traffic analysis.



قيم البحث

اقرأ أيضاً

Approximate Bayesian Computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for model ling time dependent, real world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g., the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography (EEG) data. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.
In this paper, a nonparametric maximum likelihood (ML) estimator for band-limited (BL) probability density functions (pdfs) is proposed. The BLML estimator is consistent and computationally efficient. To compute the BLML estimator, three approximate algorithms are presented: a binary quadratic programming (BQP) algorithm for medium scale problems, a Trivial algorithm for large-scale problems that yields a consistent estimate if the underlying pdf is strictly positive and BL, and a fast implementation of the Trivial algorithm that exploits the band-limited assumption and the Nyquist sampling theorem (BLMLQuick). All three BLML estimators outperform kernel density estimation (KDE) algorithms (adaptive and higher order KDEs) with respect to the mean integrated squared error for data generated from both BL and infinite-band pdfs. Further, the BLMLQuick estimate is remarkably faster than the KD algorithms. Finally, the BLML method is applied to estimate the conditional intensity function of a neuronal spike train (point process) recorded from a rats entorhinal cortex grid cell, for which it outperforms state-of-the-art estimators used in neuroscience.
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very popular in spatial extremes. We focus on the two most popular unbiased stochastic derivative estimation approaches: the likelihood ratio method (LRM) and the infinitesimal perturbation analysis (IPA). LRM requires the multivariate density of the max-stable field to be explicit, and IPA necessitates the computation of the derivative with respect to the parameters for each simulated value. We propose convenient and tractable conditions ensuring the validity of LRM and IPA in the cases of the Brown--Resnick and Smith field, respectively. Obtaining such conditions is intricate owing to the very structure of max-stable fields. Then we focus on risk and dependence measures, which constitute one of the several frameworks where our theoretical results can be useful. We perform a simulation study which shows that both LRM and IPA perform well in various configurations, and provide a real case study that is valuable for the insurance industry.
We study the convergence properties of a collapsed Gibbs sampler for Bayesian vector autoregressions with predictors, or exogenous variables. The Markov chain generated by our algorithm is shown to be geometrically ergodic regardless of whether the n umber of observations in the underlying vector autoregression is small or large in comparison to the order and dimension of it. In a convergence complexity analysis, we also give conditions for when the geometric ergodicity is asymptotically stable as the number of observations tends to infinity. Specifically, the geometric convergence rate is shown to be bounded away from unity asymptotically, either almost surely or with probability tending to one, depending on what is assumed about the data generating process. This result is one of the first of its kind for practically relevant Markov chain Monte Carlo algorithms. Our convergence results hold under close to arbitrary model misspecification.
The problem of state estimation in the setting of partially-observed discrete event systems subject to cyber attacks is considered. An operator observes a plant through a natural projection that hides the occurrence of certain events. The objective o f the operator is that of estimating the current state of the system. The observation is corrupted by an attacker which can insert and erase some sensor readings with the aim of altering the state estimation of the operator. Furthermore, the attacker wants to remain stealthy, namely the operator should not realize that its observation has been corrupted. An automaton, called attack structure, is defined to describe the set of all possible attacks. In more details, first, an unbounded attack structure is obtained by concurrent composition of two state observers, the attacker observer and the operator observer. Then, the attack structure is refined to obtain a supremal stealthy attack substructure. An attack function may be selected from the supremal stealthy attack substructure and it is said harmful when some malicious goal of the attacker is reached, namely if the set of states consistent with the observation produced by the system and the set of states consistent with the corrupted observation belong to a given relation. The proposed approach can be dually used to verify if there exists a harmful attack for the given system: this allows one to establish if the system is safe under attack.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا