ﻻ يوجد ملخص باللغة العربية
Approximate Bayesian Computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time dependent, real world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g., the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography (EEG) data. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.
Recently a new algorithm for sampling posteriors of unnormalised probability densities, called ABC Shadow, was proposed in [8]. This talk introduces a global optimisation procedure based on the ABC Shadow simulation dynamics. First the general method
In this note we provide explicit expressions and expansions for a special function which appears in nonparametric estimation of log-densities. This function returns the integral of a log-linear function on a simplex of arbitrary dimension. In particu
To understand the behavior of large dynamical systems like transportation networks, one must often rely on measurements transmitted by a set of sensors, for instance individual vehicles. Such measurements are likely to be incomplete and imprecise, wh
The information-based optimal subdata selection (IBOSS) is a computationally efficient method to select informative data points from large data sets through processing full data by columns. However, when the volume of a data set is too large to be pr
In this tutorial we schematically illustrate four algorithms: (1) ABC rejection for parameter estimation (2) ABC SMC for parameter estimation (3) ABC rejection for model selection on the joint space (4) ABC SMC for model selection on the joint space.