ﻻ يوجد ملخص باللغة العربية
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very popular in spatial extremes. We focus on the two most popular unbiased stochastic derivative estimation approaches: the likelihood ratio method (LRM) and the infinitesimal perturbation analysis (IPA). LRM requires the multivariate density of the max-stable field to be explicit, and IPA necessitates the computation of the derivative with respect to the parameters for each simulated value. We propose convenient and tractable conditions ensuring the validity of LRM and IPA in the cases of the Brown--Resnick and Smith field, respectively. Obtaining such conditions is intricate owing to the very structure of max-stable fields. Then we focus on risk and dependence measures, which constitute one of the several frameworks where our theoretical results can be useful. We perform a simulation study which shows that both LRM and IPA perform well in various configurations, and provide a real case study that is valuable for the insurance industry.
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be dependent non-negative random variables and $Y_i=I_{p_i} X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ are independent Bernoulli random variables independent of $X_{lambda_i}$s, with ${rm E}[I_{
In this paper we develop a Bayesian procedure for estimating multivariate stochastic volatility (MSV) using state space models. A multiplicative model based on inverted Wishart and multivariate singular beta distributions is proposed for the evolutio
Max-stable random fields are very appropriate for the statistical modelling of spatial extremes. Hence, integrals of functions of max-stable random fields over a given region can play a key role in the assessment of the risk of natural disasters, mea
In this paper, we analyze the convergence rate of a collapsed Gibbs sampler for crossed random effects models. Our results apply to a substantially larger range of models than previous works, including models that incorporate missingness mechanism an
We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matr