ﻻ يوجد ملخص باللغة العربية
We study the convergence properties of a collapsed Gibbs sampler for Bayesian vector autoregressions with predictors, or exogenous variables. The Markov chain generated by our algorithm is shown to be geometrically ergodic regardless of whether the number of observations in the underlying vector autoregression is small or large in comparison to the order and dimension of it. In a convergence complexity analysis, we also give conditions for when the geometric ergodicity is asymptotically stable as the number of observations tends to infinity. Specifically, the geometric convergence rate is shown to be bounded away from unity asymptotically, either almost surely or with probability tending to one, depending on what is assumed about the data generating process. This result is one of the first of its kind for practically relevant Markov chain Monte Carlo algorithms. Our convergence results hold under close to arbitrary model misspecification.
The logistic regression model is the most popular model for analyzing binary data. In the absence of any prior information, an improper flat prior is often used for the regression coefficients in Bayesian logistic regression models. The resulting int
In this paper, we analyze the convergence rate of a collapsed Gibbs sampler for crossed random effects models. Our results apply to a substantially larger range of models than previous works, including models that incorporate missingness mechanism an
The Bayesian probit regression model (Albert and Chib (1993)) is popular and widely used for binary regression. While the improper flat prior for the regression coefficients is an appropriate choice in the absence of any prior information, a proper n
The emergence of big data has led to a growing interest in so-called convergence complexity analysis, which is the study of how the convergence rate of a Monte Carlo Markov chain (for an intractable Bayesian posterior distribution) scales as the unde
In many fields, researchers are interested in discovering features with substantial effect on the response from a large number of features and controlling the proportion of false discoveries. By incorporating the knockoff procedure in the Bayesian fr