ﻻ يوجد ملخص باللغة العربية
Spectral methods include a family of algorithms related to the eigenvectors of certain data-generated matrices. In this work, we are interested in studying the geometric landscape of the eigendecomposition problem in various spectral methods. In particular, we first extend known results regarding the landscape at critical points to larger regions near the critical points in a special case of finding the leading eigenvector of a symmetric matrix. For a more general eigendecomposition problem, inspired by recent findings on the connection between the landscapes of empirical risk and population risk, we then build a novel connection between the landscape of an eigendecomposition problem that uses random measurements and the one that uses the true data matrix. We also apply our theory to a variety of low-rank matrix optimization problems and conduct a series of simulations to illustrate our theoretical findings.
The landscape of empirical risk has been widely studied in a series of machine learning problems, including low-rank matrix factorization, matrix sensing, matrix completion, and phase retrieval. In this work, we focus on the situation where the corre
This paper studies convergence of empirical risks in reproducing kernel Hilbert spaces (RKHS). A conventional assumption in the existing research is that empirical training data do not contain any noise but this may not be satisfied in some practical
When applying eigenvalue decomposition on the quadratic term matrix in a type of linear equally constrained quadratic programming (EQP), there exists a linear mapping to project optimal solutions between the new EQP formulation where $Q$ is diagonali
In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or
The key findings of classical population genetics are derived using a framework based on information theory using the entropies of the allele frequency distribution as a basis. The common results for drift, mutation, selection, and gene flow will be