ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Robustness of Empirical Risks in Machine Learning

93   0   0.0 ( 0 )
 نشر من قبل Shaoyan Guo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies convergence of empirical risks in reproducing kernel Hilbert spaces (RKHS). A conventional assumption in the existing research is that empirical training data do not contain any noise but this may not be satisfied in some practical circumstances. Consequently the existing convergence results do not provide a guarantee as to whether empirical risks based on empirical data are reliable or not when the data contain some noise. In this paper, we fill out the gap in a few steps. First, we derive moderate sufficient conditions under which the expected risk changes stably (continuously) against small perturbation of the probability distribution of the underlying random variables and demonstrate how the cost function and kernel affect the stability. Second, we examine the difference between laws of the statistical estimators of the expected optimal loss based on pure data and contaminated data using Prokhorov metric and Kantorovich metric and derive some qualitative and quantitative statistical robustness results. Third, we identify appropriate metrics under which the statistical estimators are uniformly asymptotically consistent. These results provide theoretical grounding for analysing asymptotic convergence and examining reliability of the statistical estimators in a number of well-known machine learning models.



قيم البحث

اقرأ أيضاً

Spectral methods include a family of algorithms related to the eigenvectors of certain data-generated matrices. In this work, we are interested in studying the geometric landscape of the eigendecomposition problem in various spectral methods. In part icular, we first extend known results regarding the landscape at critical points to larger regions near the critical points in a special case of finding the leading eigenvector of a symmetric matrix. For a more general eigendecomposition problem, inspired by recent findings on the connection between the landscapes of empirical risk and population risk, we then build a novel connection between the landscape of an eigendecomposition problem that uses random measurements and the one that uses the true data matrix. We also apply our theory to a variety of low-rank matrix optimization problems and conduct a series of simulations to illustrate our theoretical findings.
Empirical Centroid Fictitious Play (ECFP) is a generalization of the well-known Fictitious Play (FP) algorithm designed for implementation in large-scale games. In ECFP, the set of players is subdivided into equivalence classes with players in the sa me class possessing similar properties. Players choose a next-stage action by tracking and responding to aggregate statistics related to each equivalence class. This setup alleviates the difficult task of tracking and responding to the statistical behavior of every individual player, as is the case in traditional FP. Aside from ECFP, many useful modifications have been proposed to classical FP, e.g., rules allowing for network-based implementation, increased computational efficiency, and stronger forms of learning. Such modifications tend to be of great practical value; however, their effectiveness relies heavily on two fundamental properties of FP: robustness to alterations in the empirical distribution step size process, and robustness to best-response perturbations. The main contribution of the paper is to show that similar robustness properties also hold for the ECFP algorithm. This result serves as a first step in enabling practical modifications to ECFP, similar to those already developed for FP.
Many proposed methods for explaining machine learning predictions are in fact challenging to understand for nontechnical consumers. This paper builds upon an alternative consumer-driven approach called TED that asks for explanations to be provided in training data, along with target labels. Using semi-synthetic data from credit approval and employee retention applications, experiments are conducted to investigate some practical considerations with TED, including its performance with different classification algorithms, varying numbers of explanations, and variability in explanations. A new algorithm is proposed to handle the case where some training examples do not have explanations. Our results show that TED is robust to increasing numbers of explanations, noisy explanations, and large fractions of missing explanations, thus making advances toward its practical deployment.
70 - Yusuke Kawamoto 2019
We introduce a logical approach to formalizing statistical properties of machine learning. Specifically, we propose a formal model for statistical classification based on a Kripke model, and formalize various notions of classification performance, ro bustness, and fairness of classifiers by using epistemic logic. Then we show some relationships among properties of classifiers and those between classification performance and robustness, which suggests robustness-related properties that have not been formalized in the literature as far as we know. To formalize fairness properties, we define a notion of counterfactual knowledge and show techniques to formalize conditional indistinguishability by using counterfactual epistemic operators. As far as we know, this is the first work that uses logical formulas to express statistical properties of machine learning, and that provides epistemic (resp. counterfactually epistemic) views on robustness (resp. fairness) of classifiers.
In this paper, we develop an efficient sketchy empirical natural gradient method (SENG) for large-scale deep learning problems. The empirical Fisher information matrix is usually low-rank since the sampling is only practical on a small amount of data at each iteration. Although the corresponding natural gradient direction lies in a small subspace, both the computational cost and memory requirement are still not tractable due to the high dimensionality. We design randomized techniques for different neural network structures to resolve these challenges. For layers with a reasonable dimension, sketching can be performed on a regularized least squares subproblem. Otherwise, since the gradient is a vectorization of the product between two matrices, we apply sketching on the low-rank approximations of these matrices to compute the most expensive parts. A distributed version of SENG is also developed for extremely large-scale applications. Global convergence to stationary points is established under some mild assumptions and a fast linear convergence is analyzed under the neural tangent kernel (NTK) case. Extensive experiments on convolutional neural networks show the competitiveness of SENG compared with the state-of-the-art methods. On the task ResNet50 with ImageNet-1k, SENG achieves 75.9% Top-1 testing accuracy within 41 epochs. Experiments on the distributed large-batch training show that the scaling efficiency is quite reasonable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا