ﻻ يوجد ملخص باللغة العربية
When applying eigenvalue decomposition on the quadratic term matrix in a type of linear equally constrained quadratic programming (EQP), there exists a linear mapping to project optimal solutions between the new EQP formulation where $Q$ is diagonalized and the original formulation. Although such a mapping requires a particular type of equality constraints, it is generalizable to some real problems such as efficient frontier for portfolio allocation and classification of Least Square Support Vector Machines (LSSVM). The established mapping could be potentially useful to explore optimal solutions in subspace, but it is not very clear to the author. This work was inspired by similar work proved on unconstrained formulation discussed earlier in cite{Tan}, but its current proof is much improved and generalized. To the authors knowledge, very few similar discussion appears in literature.
This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extr
In this work, we propose a robust approach to design distributed controllers for unknown-but-sparse linear and time-invariant systems. By leveraging modern techniques in distributed controller synthesis and structured linear inverse problems as appli
We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to ex
The coordinate descent (CD) method has recently become popular for solving very large-scale problems, partly due to its simple update, low memory requirement, and fast convergence. In this paper, we explore the greedy CD on solving non-negative quadr
The theory of integral quadratic constraints (IQCs) allows the certification of exponential convergence of interconnected systems containing nonlinear or uncertain elements. In this work, we adapt the IQC theory to study first-order methods for smoot