ﻻ يوجد ملخص باللغة العربية
We study quasinormal modes of shear gravitational perturbations for hyperscaling violating Lifshitz theories, with Lifshitz and hyperscaling violating exponents $z$ and $theta$. The lowest quasinormal mode frequency yields a shear diffusion constant which is in agreement with that obtained in previous work by other methods. In particular for theories with $z< d_i+2-theta$ where $d_i$ is the boundary spatial dimension, the shear diffusion constant exhibits power-law scaling with temperature, while for $z=d_i+2-theta$, it exhibits logarithmic scaling. We then calculate certain 2-point functions of the dual energy-momentum tensor holographically for $zleq d_i+2-theta$, identifying the diffusive poles with the quasinormal modes above. This reveals universal behaviour $eta/s=1/4pi$ for the viscosity-to-entropy-density ratio for all $zleq d_i+2-theta$.
We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in arXiv:1604.05092 [hep-th]. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son and Starinets for shear gravit
A Vaidya type geometry describing gravitation collapse in asymptotically Lifshitz spacetime with hyperscaling violation provides a simple holographic model for thermalization near a quantum critical point with non-trivial dynamic and hyperscaling vio
We employ the numerical and analytical methods to study the effects of the hyperscaling violation on the ground and excited states of holographic superconductors. For both the holographic s-wave and p-wave models with the hyperscaling violation, we o
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th