ﻻ يوجد ملخص باللغة العربية
Entanglement shared among multiple parties presents complex challenges for the characterisation of different types of entanglement. One of the most basic insights is the fact that some mixed states can feature entanglement across every possible cut of a multipartite system, yet can be produced via a mixture of partially separable states. To distinguish states that genuinely cannot be produced from mixing partially separable states, the term genuine multipartite entanglement was coined. All these considerations originate in a paradigm where only a single copy of the state is distributed and locally acted upon. In contrast, advances in quantum technologies prompt the question of how this picture changes when multiple copies of the same state become locally accessible. Here we show that multiple copies unlock genuine multipartite entanglement from partially separable states, even from undistillable ensembles, and even more than two copies can be required to observe this effect. With these findings, we characterise the notion of partial separability in the paradigm of multiple copies and conjecture a strict hierarchy of activatable states and an asymptotic collapse of hierarchy.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled sy
Quantifying genuine entanglement is a crucial task in quantum information theory. In this work, we give an approach of constituting genuine $m$-partite entanglement measure from any bipartite entanglement and any $k$-partite entanglement measure, $3l
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is