ﻻ يوجد ملخص باللغة العربية
Quantifying genuine entanglement is a crucial task in quantum information theory. In this work, we give an approach of constituting genuine $m$-partite entanglement measure from any bipartite entanglement and any $k$-partite entanglement measure, $3leq k<m$.In addition, as a complement to the three-qubit concurrence triangle proposed in [Phys. Rev. Lett., 127, 040403], we show that the triangle relation is also valid for any other entanglement measure and system with any dimension. We also discuss the tetrahedron structure for the four-partite system via the triangle relation associated with tripartite and bipartite entanglement respectively. For multipartite system that contains more than four parties, there is no symmetric geometric structure as that of tri- and four-partite cases.
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled sy
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is
The problems of genuine multipartite entanglement detection and classification are challenging. We show that a multipartite quantum state is genuine multipartite entangled if the multipartite concurrence is larger than certain quantities given by the