ﻻ يوجد ملخص باللغة العربية
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially when the system involves more than two parties, for which different partitions must be simultaneously considered. In the case of mixed states, intermediate levels of correlations must be introduced, coined by the name inseparability. In this work, we revisit in more detail such a concept in the context of continuous-variable quantum optics. We consider a six-partite quantum state that we have effectively generated by the parametric downconversion of a femtosecond frequency comb, the full 12 x 12 covariance matrix of which has been experimentally determined. We show that, though this state does not exhibit genuine entanglement, it is undoubtedly multipartite-entangled. The consideration of not only the entanglement of individual mode-decompositions but also of combinations of those solves the puzzle and exemplifies the importance of studying different categories of multipartite entanglement.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled sy
Quantifying genuine entanglement is a crucial task in quantum information theory. In this work, we give an approach of constituting genuine $m$-partite entanglement measure from any bipartite entanglement and any $k$-partite entanglement measure, $3l
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is
The problems of genuine multipartite entanglement detection and classification are challenging. We show that a multipartite quantum state is genuine multipartite entangled if the multipartite concurrence is larger than certain quantities given by the