ﻻ يوجد ملخص باللغة العربية
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled systems compared with quantum multisource networks. We prove that any symmetric entangled pure state shows stronger nonlocality than the genuinely multipartite nonlocality in the biseparable model. Similar results hold for other entangled pure states with local dimensions no larger than $3$. We further provide computational conditions for witnessing the new nonlocality of noisy states. These results suggest that the present model is useful characterizing a new kind of generic quantum entanglement.
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart
Quantifying genuine entanglement is a crucial task in quantum information theory. In this work, we give an approach of constituting genuine $m$-partite entanglement measure from any bipartite entanglement and any $k$-partite entanglement measure, $3l
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is
The problems of genuine multipartite entanglement detection and classification are challenging. We show that a multipartite quantum state is genuine multipartite entangled if the multipartite concurrence is larger than certain quantities given by the