ﻻ يوجد ملخص باللغة العربية
The Covid-19 pandemic has strained the hospital systems in many countries in the world, especially in developing countries. In many low-resource hospitals, severely ill hypoxemic Covid-19 patients are treated with various forms of low-flow oxygen therapy (0-15 L/min), including interfaces such as a nasal cannula, Hudson mask, venturi-mask, and non-rebreather masks. When 15L/min of pure oxygen flow is not sufficient for the patient, treatment guidelines suggest non-invasive positive pressure ventilation (NIPPV) or high-flow nasal oxygenation (HFNO) as the next stage of treatment. However, administering HFNO in the general wards of a low-resource hospital is difficult due to several factors, including difficulty in operation, unavailability of electric power outlets, and frequent maintenance. Therefore, in many cases, the highest level of care a patient receives in the general ward is 15L/min of oxygen on a Non-Rebreather Mask. With a shortage of Intensive Care Unit (ICU) beds, this is a major problem since intermediate forms of treatments are simply not available at an affordable cost. To address this gap, we have developed a low-cost CPAP system specifically designed for low-resource hospitals. The device is a precision venturi-based flow-generator capable of providing up to 60L/min of flow. The device utilizes the mechanics of a jet pump driven by high-pressure oxygen to increase the volumetric flow rate by entraining atmospheric air. The fraction of inspired oxygen (FiO2) can be attained between 40 - 100% using a dual-flowmeter. Consisting of a traditional 22mm breathing circuit, a non-vented CPAP mask, and a Positive End-Expiratory Pressure (PEEP) valve, the CPAP can provide positive pressures between 5-20 cm H2O. The device is manufactured using local 3D printing and workshop facilities.
Recent studies have reported an increased risk of developing brain and neck tumors, as well as cataracts, in practitioners in interventional radiology (IR). Occupational radiation protection in IR has been a top concern for regulatory agencies and pr
Objective evaluation of new and improved methods for PET imaging requires access to images with ground truth, as can be obtained through simulation studies. However, for these studies to be clinically relevant, it is important that the simulated imag
We present an overview of the ICE hardware and software framework that implements large arrays of interconnected FPGA-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, mill
This paper presents an analytical design of an ultrasonic power transfer system based on piezoelectric micro-machined ultrasonic transducer (PMUT) for fully wireless brain implants in mice. The key steps like the material selection of each layer and
We present a design for a continuous-wave (CW) atom laser on a chip and describe the process used to fabricate the device. Our design aims to integrate quadrupole magnetic guiding of ground state Rb atoms with continuous surface adsorption evaporativ