ﻻ يوجد ملخص باللغة العربية
Recent studies have reported an increased risk of developing brain and neck tumors, as well as cataracts, in practitioners in interventional radiology (IR). Occupational radiation protection in IR has been a top concern for regulatory agencies and professional societies. To help minimize occupational radiation exposure in IR, we conceptualized a virtual reality (VR) based radiation safety training system to help operators understand complex radiation fields and to avoid high radiation areas through game-like interactive simulations. The preliminary development of the system has yielded results suggesting that the training system can calculate and report the radiation exposure after each training session based on a database precalculated from computational phantoms and Monte Carlo simulations and the position information provided in real-time by the MS Hololens headset worn by trainee. In addition, real-time dose rate and cumulative dose will be displayed to the trainee by MS Hololens to help them adjust their practice. This paper presents the conceptual design of the overall hardware and software design, as well as preliminary results to combine MS HoloLens headset and complex 3D X-ray field spatial distribution data to create a mixed reality environment for safety training purpose in IR.
Objective: Interventional MRI (i-MRI) is crucial for MR image-guided therapy. Current image reconstruction methods for dynamic MR imaging are mostly retrospective that may not be suitable for i-MRI in real-time. Therefore, an algorithm to reconstruct
The primary purpose of this paper is to provide a design of a blockchain-based system, which produces a verifiable record of achievements. Such a system has a wide range of potential benefits for students, employers and higher education institutions.
In this paper we report on a study conducted with a group of older adults in which they engaged in participatory design workshops to create a VR ATM training simulation. Based on observation, recordings and the developed VR application we present the
This paper presents an analytical design of an ultrasonic power transfer system based on piezoelectric micro-machined ultrasonic transducer (PMUT) for fully wireless brain implants in mice. The key steps like the material selection of each layer and
The Covid-19 pandemic has strained the hospital systems in many countries in the world, especially in developing countries. In many low-resource hospitals, severely ill hypoxemic Covid-19 patients are treated with various forms of low-flow oxygen the