ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Fabrication of a Chip-based Continuous-wave Atom Laser

104   0   0.0 ( 0 )
 نشر من قبل Erik Power
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a design for a continuous-wave (CW) atom laser on a chip and describe the process used to fabricate the device. Our design aims to integrate quadrupole magnetic guiding of ground state Rb atoms with continuous surface adsorption evaporative cooling to create a continuous Bose-Einstein condensate; out-coupled atoms from the condensate should realize a CW atom laser. We choose a geometry with three wires embedded in a spiral pattern in a silicon subtrate. The guide features an integrated solenoid to mitigate spin-flip losses and provide a tailored longitudinal magnetic field. Our design also includes multiple options for atom interferometry: accomodations are in place for laser-generated atom Fabry-Perot and Mach-Zehnder interferometers, and a pair of atomic beam X-splitters is incorporated for an all-magnetic atom Mach-Zehnder setup. We demonstrate the techniques necessary to fabricate our device using existing micro- and nano-scale fabrication equipment, and discuss future options for modified designs and fabrication processes.



قيم البحث

اقرأ أيضاً

177 - S. J. Kim , H. Yu , S. T. Gang 2016
We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {mu}m to 57 {mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.
It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms [1,2]. In this article we describe how the gratings are designed and mic ro-fabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.
We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It con sists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.
545 - S. J. Kim , H. Yu , S. T. Gang 2015
We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.
The ability to amplify optical signals is of pivotal importance across science and technology. The development of optical amplifiers has revolutionized optical communications, which are today pervasively used in virtually all sensing and communicatio n applications of coherent laser sources. In the telecommunication bands, optical amplifiers typically utilize gain media based on III-V semiconductors or rare-earth-doped fibers. Another way to amplify optical signals is to utilize the Kerr nonlinearity of optical fibers or waveguides via parametric processes. Such parametric amplifiers of travelling continuous wave have been originally developed in the microwave domain, and enable quantum-limited signal amplification with high peak gain, broadband gain spectrum tailored via dispersion control, and ability to enable phase sensitive amplification. Despite these advantages, optical amplifiers based on parametric gain have proven impractical in silica fibers due to the low Kerr nonlinearity. Recent advances in photonic integrated circuits have revived interest in parametric amplifiers due to the significantly increased nonlinearity in various integrated platforms. Yet, despite major progress, continuous-wave-pumped parametric amplifiers built on photonic chips have to date remained out of reach. Here we demonstrate a chip-based travelling-wave optical parametric amplifier with net signal gain in the continuous-wave regime. Using ultralow-loss, dispersion-engineered, meter-long, silicon nitride photonic integrated circuits that are tightly coiled on a photonic chip, we achieve a continuous parametric gain of 12 dB that exceeds both the on-chip optical propagation loss and fiber-chip-fiber coupling losses in the optical C-band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا