ﻻ يوجد ملخص باللغة العربية
In the continuous setting, we expect the product of two oscillating functions to oscillate even more (generically). On a graph $G=(V,E)$, there are only $|V|$ eigenvectors of the Laplacian $L=D-A$, so one oscillates `the most. The purpose of this short note is to point out an interesting phenomenon: if $phi_1, phi_2$ are delocalized eigenvectors of $L$ corresponding to large eigenvalues, then their (pointwise) product $phi_1 cdot phi_2$ is smooth (in the sense of small Dirichlet energy): highly oscillatory functions have largely matching oscillation patterns.
Real-world data is often times associated with irregular structures that can analytically be represented as graphs. Having access to this graph, which is sometimes trivially evident from domain knowledge, provides a better representation of the data
We study the properties of eigenvalues and corresponding eigenfunctions generated by a defect in the gaps of the spectrum of a high-contrast random operator. We consider a family of elliptic operators $mathcal{A}^varepsilon$ in divergence form whose
Let $Gamma$ be a co-compact Fuchsian group of isometries on the Poincare disk $DD$ and $Delta$ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction $f$ of $Delta$, equivariant by $Gamma$ with real eigenvalue $lambda=-s(1-s)$, where
We investigate the asymptotic behavior of eigenfunctions of the Laplacian on Riemannian manifolds. We show that Benjamini-Schramm convergence provides a unified language for the level and eigenvalue aspects of the theory. As a result, we present a ma
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. The direct product G X H of graphs G and H is the graph having vertex set V(G) X V(H) and edge set E(G X H) = {(g_i,h_s)(g_j,h_t