ﻻ يوجد ملخص باللغة العربية
Real-world data is often times associated with irregular structures that can analytically be represented as graphs. Having access to this graph, which is sometimes trivially evident from domain knowledge, provides a better representation of the data and facilitates various information processing tasks. However, in cases where the underlying graph is unavailable, it needs to be learned from the data itself for data representation, data processing and inference purposes. Existing literature on learning graphs from data has mostly considered arbitrary graphs, whereas the graphs generating real-world data tend to have additional structure that can be incorporated in the graph learning procedure. Structure-aware graph learning methods require learning fewer parameters and have the potential to reduce computational, memory and sample complexities. In light of this, the focus of this paper is to devise a method to learn structured graphs from data that are given in the form of product graphs. Product graphs arise naturally in many real-world datasets and provide an efficient and compact representation of large-scale graphs through several smaller factor graphs. To this end, first the graph learning problem is posed as a linear program, which (on average) outperforms the state-of-the-art graph learning algorithms. This formulation is of independent interest itself as it shows that graph learning is possible through a simple linear program. Afterwards, an alternating minimization-based algorithm aimed at learning various types of product graphs is proposed, and local convergence guarantees to the true solution are established for this algorithm. Finally the performance gains, reduced sample complexity, and inference capabilities of the proposed algorithm over existing methods are also validated through numerical simulations on synthetic and real datasets.
The problem of graph learning concerns the construction of an explicit topological structure revealing the relationship between nodes representing data entities, which plays an increasingly important role in the success of many graph-based representa
In this paper, we propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals that are subject to a high level of nonlinear distortion. Specifically, a novel deep learning based convolutional neural network re
Special high-end sensors with expensive hardware are usually needed to measure shock signals with high accuracy. In this paper, we show that cheap low-end sensors calibrated by deep neural networks are also capable to measure high-g shocks accurately
In the continuous setting, we expect the product of two oscillating functions to oscillate even more (generically). On a graph $G=(V,E)$, there are only $|V|$ eigenvectors of the Laplacian $L=D-A$, so one oscillates `the most. The purpose of this sho
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties -- the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing