ﻻ يوجد ملخص باللغة العربية
We study the properties of eigenvalues and corresponding eigenfunctions generated by a defect in the gaps of the spectrum of a high-contrast random operator. We consider a family of elliptic operators $mathcal{A}^varepsilon$ in divergence form whose coefficients possess double porosity type scaling and are perturbed on a fixed-size compact domain. The coefficients of $mathcal{A}^varepsilon$ are random variables generated, in an appropriate sense, by an ergodic dynamical system. Working in the gaps of the limiting spectrum of the unperturbed operator $widehat{mathcal{A}}^varepsilon$, we show that the point spectrum of $mathcal{A}^epsilon$ converges in the sense of Hausdorff to the point spectrum of the homogenised operator $mathcal{A}^mathrm{hom}$ as $varepsilon to 0$. Furthermore, we prove that the eigenfunctions of $mathcal{A}^varepsilon$ decay exponentially at infinity uniformly for sufficiently small $varepsilon$. This, in turn, yields strong stochastic two-scale convergence of such eigenfunctions to eigenfunctions of $mathcal{A}^mathrm{hom}$.
We investigate the asymptotic behavior of eigenfunctions of the Laplacian on Riemannian manifolds. We show that Benjamini-Schramm convergence provides a unified language for the level and eigenvalue aspects of the theory. As a result, we present a ma
We develop a Hilbert-space approach to the diffusion process of the Brownian motion in a bounded domain with random jumps from the boundary introduced by Ben-Ari and Pinsky in 2007. The generator of the process is introduced by a diffusion elliptic d
Bounds on the exponential decay of generalized eigenfunctions of bounded and unbounded selfadjoint Jacobi matrices are established. Two cases are considered separately: (i) the case in which the spectral parameter lies in a general gap of the spectru
We consider the self-adjoint Schrodinger operator in $L^2(mathbb{R}^d)$, $dgeq 2$, with a $delta$-potential supported on a hyperplane $Sigmasubseteqmathbb{R}^d$ of strength $alpha=alpha_0+alpha_1$, where $alpha_0inmathbb{R}$ is a constant and $alpha_
In this note the three dimensional Dirac operator $A_m$ with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $A_m$ is self-adjoint in $L^2(Omega;mathbb{C}^4)$ for any op