ﻻ يوجد ملخص باللغة العربية
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. The direct product G X H of graphs G and H is the graph having vertex set V(G) X V(H) and edge set E(G X H) = {(g_i,h_s)(g_j,h_t): g_ig_j belongs to E(G) and h_sh_t belongs to E(H)}. We prove that the direct product M_m(G) X M_n(H) of the generalized Mycielskians of G and H is a cover graph if and only if G or H is bipartite.
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any or
A graph $X$ is said to be unstable if the direct product $X times K_2$ (also called the canonical double cover of $X$) has automorphisms that do not come from automorphisms of its factors $X$ and $K_2$. It is nontrivially unstable if it is unstable,
A graph $X$ is said to be unstable if the direct product $X times K_2$ (also called the canonical double cover of $X$) has automorphisms that do not come from automorphisms of its factors $X$ and $K_2$. It is nontrivially unstable if it is unstable,
For a simple graph $G=(V,E),$ let $mathcal{S}_+(G)$ denote the set of real positive semidefinite matrices $A=(a_{ij})$ such that $a_{ij} eq 0$ if ${i,j}in E$ and $a_{ij}=0$ if ${i,j} otin E$. The maximum positive semidefinite nullity of $G$, denoted
Let $phi_H^r(n)$ be the smallest integer such that, for all $r$-graphs $G$ on $n$ vertices, the edge set $E(G)$ can be partitioned into at most $phi_H^r(n)$ parts, of which every part either is a single edge or forms an $r$-graph isomorphic to $H$. T