ﻻ يوجد ملخص باللغة العربية
The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has been called into question in several works. We definitively prove the existence of quasinormal modes for massless and massive scalar fields in all dimensions and for all scalar field masses, and present a simple method for the explicit calculation of QNMs and the corresponding mode solutions. By passing to coordinates which are regular at the cosmological horizon, we demonstrate that certain QNMs only appear in the QNM expansion of the field when the initial data do not vanish near the cosmological horizon. The key objects in the argument are dual resonant states. These are distributional mode solutions of the adjoint field equation satisfying a generalized incoming condition at the horizon, and they characterize the amplitudes with which QNMs contribute to the QNM expansion of the field.
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs
In this work, we present a numerical scheme to study the quasinormal modes of the time-dependent Vaidya black hole metric in asymptotically anti-de Sitter spacetime. The proposed algorithm is primarily based on a generalized matrix method for quasino
We generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwe
We study the distribution and generation of quantum coherence for two-mode and multi-mode Gaussian states in de Sitter space. It is found that the quantum coherence is redistributed among the mode in different open charts under the curvature effect o
We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely