ﻻ يوجد ملخص باللغة العربية
We study the distribution and generation of quantum coherence for two-mode and multi-mode Gaussian states in de Sitter space. It is found that the quantum coherence is redistributed among the mode in different open charts under the curvature effect of de Sitter space. In particular, the Gaussian coherence for the initially correlated state is found to survive in the limit of infinite curvature, while quantum entanglement vanishing in this limit. Unlike entanglement and steering, the coherence of a massive scalar field is more robust than a massless field under the influence of curvature of de Sitter space. In addition, it is shown that the curvature generates two-mode Gaussian state and three-mode Gaussian state quantum coherence among the open charts, even though the observers are localized in causally disconnected regions. It is worth noting that the gravity-generated three-mode coherence is extremely sensitive to the curvature effect for the conformal and massless scalar fields, which may be in principle employed to design an effective detector for the space curvature.
We study the distribution of quantum steerability for continuous variables between two causally disconnected open charts in de Sitter space. It is shown that quantum steerability suffers from sudden death in de Sitter space, which is quite different
We study the distribution of quantum entanglement for continuous variables among causally disconnected open charts in de Sitter space. It is found that genuine tripartite entanglement is generated among the open chart modes under the influence of cur
The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has been called into question in several works. We definitively prove the existence of quasinormal modes for massless and massive scalar fields in all dimensions
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure diffe
The quantum states or Hilbert spaces for the quantum field theory in de Sitter space-time are studied on ambient space formalism. In this formalism, the quantum states are only depended $(1)$ on the topological character of the de Sitter space-time,