ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasinormal spectra of scale-dependent Schwarzschild-de Sitter black holes

66   0   0.0 ( 0 )
 نشر من قبل Grigoris Panotopoulos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely used WKB semi-classical approximation, we investigate the impact on the spectrum of the angular degree, the overtone number as well as the scale-dependent parameter for fixed black hole mass and cosmological constant. We summarize our numerical results in tables, and for better visualization, we show them graphically as well. All modes are found to be stable. Our findings show that both the real part and the absolute value of the imaginary part of the frequencies increase with the parameter $epsilon$ that measures the deviation from the classical geometry. Therefore, in the framework of scale-dependent gravity the modes oscillate and decay faster in comparison with their classical counterparts.



قيم البحث

اقرأ أيضاً

129 - Peter Hintz , YuQing Xie 2021
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs ets of the complex plane and for fixed angular momenta, the QNMs converge to those of the static model of de Sitter space. Detailed numerics illustrate our results and suggest a number of open problems.
It has been known that the Schwarzschild-de Sitter (Sch-dS) black hole may not be in thermal equilibrium and also be found to be thermodynamically unstable in the standard black hole thermodynamics. In the present work, we investigate the possibility to realize the thermodynamical stability of the Sch-dS black hole as an effective system by using the R{e}nyi statistics, which includes the non-extensive nature of black holes. Our results indicate that the non-extensivity allows the black hole to be thermodynamically stable which gives rise to the lower bound on the non-extensive parameter. By comparing the results to ones in the separated system approach, we find that the effective temperature is always smaller than the black hole horizon temperature and the thermodynamically stable black hole in effective approach is always larger than one in separated approach at a certain temperature. There exists only the zeroth-order phase transition from the the hot gas phase to the black hole phase for the effective system while it is possible to have the transition of both the zeroth order and the first order for the separated system.
We generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwe ll equations both in the Regge-Wheeler-Zerilli and in the Teukolsky formalisms and derive, based on the vanishing energy flux principle, two boundary conditions in each formalism. The Maxwell equations are then solved analytically in pure anti-de Sitter spacetimes with a global monopole, and two different normal modes are obtained due to the existence of the monopole parameter. In the small black hole and low frequency approximations, the Maxwell quasinormal modes are solved perturbatively on top of normal modes by using an asymptotic matching method, while beyond the aforementioned approximation, the Maxwell quasinormal modes are obtained numerically. We analyze the Maxwell quasinormal spectrum by varying the angular momentum quantum number $ell$, the overtone number $N$, and in particular, the monopole parameter $8pieta^2$. We show explicitly, through calculating quasinormal frequencies with both boundary conditions, that the global monopole produces the repulsive force.
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
We study the spontaneous scalarization of spherically symmetric, static and asymptotically Anti-de Sitter (aAdS) black holes in a scalar-tensor gravity model with non-mininal coupling of the form $phi^2left(alpha{cal R} + gamma {cal G}right)$, where $alpha$ and $gamma$ are constants, while ${cal R}$ and ${cal G}$ are the Ricci scalar and Gauss-Bonnet term, respectively. Since these terms act as an effective ``mass for the scalar field, non-trivial values of the scalar field in the black hole space-time are possible for {it a priori} vanishing scalar field mass. In particular, we demonstrate that the scalarization of an aAdS black hole requires the curvature invariant $-left(alpha{cal R} + gamma {cal G}right)$ to drop below the Breitenlohner-Freedman bound close to the black hole horizon, while it asymptotes to a value well above the bound. The dimension of the dual operator on the AdS boundary depends on the parameters $alpha$ and $gamma$ and we demonstrate that -- for fixed operator dimension -- the expectation value of this dual operator increases with decreasing temperature of the black hole, i.e. of the dual field theory. When taking backreaction of the space-time into account, we find that the scalarization of the black hole is the dual description of a phase transition in a strongly coupled quantum system, i.e. corresponds to a holographic phase transition. A possible application are liquid-gas quantum phase transitions, e.g. in $^4$He. Finally, we demonstrate that extremal black holes with $AdS_2times S^2$ near-horizon geometry {it cannot support regular scalar fields on the horizon} in the scalar-tensor model studied here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا