ﻻ يوجد ملخص باللغة العربية
In this work, we present a numerical scheme to study the quasinormal modes of the time-dependent Vaidya black hole metric in asymptotically anti-de Sitter spacetime. The proposed algorithm is primarily based on a generalized matrix method for quasinormal modes. The main feature of the present approach is that the quasinormal frequency, as a function of time, is obtained by a generalized secular equation and therefore a satisfactory degree of precision is achieved. The implications of the results are discussed.
We generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwe
In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAd
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fo
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has been called into question in several works. We definitively prove the existence of quasinormal modes for massless and massive scalar fields in all dimensions