ﻻ يوجد ملخص باللغة العربية
When primed with only a handful of training samples, very large pretrained language models such as GPT-3, have shown competitive results when compared to fully-supervised fine-tuned large pretrained language models. We demonstrate that the order in which the samples are provided can be the difference between near state-of-the-art and random guess performance: Essentially some permutations are fantastic and some not. We analyse this phenomenon in detail, establishing that: it is present across model sizes (even for the largest current models), it is not related to a specific subset of samples, and that a given good permutation for one model is not transferable to another. While one could use a development set to determine which permutations are performant, this would deviate from the few-shot setting as it requires additional annotated data. Instead, we use the generative nature of the language models to construct an artificial development set and based on entropy statistics of the candidate permutations from this set we identify performant prompts. Our method improves upon GPT-family models by on average 13% relative across eleven different established text classification tasks.
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the obser
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving o
The Early Gaia Data Release 3 (EDR3) provides precise astrometry for nearly 1.5 billion sources across the entire sky. A few tens of these are associated with neutron stars in the Milky Way and Magellanic Clouds. Here, we report on a search for EDR3
Prompting language models (LMs) with training examples and task descriptions has been seen as critical to recent successes in few-shot learning. In this work, we show that finetuning LMs in the few-shot setting can considerably reduce the need for pr
Quantum interference on the kagome lattice generates electronic bands with narrow bandwidth, called flat bands. Crystal structures incorporating this lattice can host strong electron correlations with non-standard ingredients, but only if these bands