ﻻ يوجد ملخص باللغة العربية
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving open the question of whether the conclusion drawn from those experiments would remain valid in other settings. We present the first large scale study of generalization in deep networks. We investigate more then 40 complexity measures taken from both theoretical bounds and empirical studies. We train over 10,000 convolutional networks by systematically varying commonly used hyperparameters. Hoping to uncover potentially causal relationships between each measure and generalization, we analyze carefully controlled experiments and show surprising failures of some measures as well as promising measures for further research.
Quantum interference on the kagome lattice generates electronic bands with narrow bandwidth, called flat bands. Crystal structures incorporating this lattice can host strong electron correlations with non-standard ingredients, but only if these bands
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the obser
The Early Gaia Data Release 3 (EDR3) provides precise astrometry for nearly 1.5 billion sources across the entire sky. A few tens of these are associated with neutron stars in the Milky Way and Magellanic Clouds. Here, we report on a search for EDR3
A single space-based gravitational wave detector will push the boundaries of astronomy and fundamental physics. Having a network of two or more detectors would significantly improve source localization. Here we consider how dual networks of space-bas
When primed with only a handful of training samples, very large pretrained language models such as GPT-3, have shown competitive results when compared to fully-supervised fine-tuned large pretrained language models. We demonstrate that the order in w