ﻻ يوجد ملخص باللغة العربية
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the observed binary fraction can still be subject to strong selection effects, as monitoring of newly discovered pulsars is rarely carried out for long enough to conclusively rule out multiplicity. Here, we use the second Gaia Data Release (DR2) to search for companions to 1534 rotation-powered pulsars with positions known to better than 0.5 arcseconds. We find 22 matches to known pulsars, including one not reported elsewhere, and 8 new possible companions to young pulsars. We examine the photometric and kinematic properties of these systems and provide empirical relations for identifying Gaia sources with potential millisecond pulsar companions. Our results confirm that the observed multiplicity fraction is small. However, we show that the number of binaries below the sensitivity of Gaia and radio timing in our sample could still be significantly higher. We constrain the binary fraction of young pulsars to be $f_{rm young}^{rm true}leq 5.3(8.3)%$ under realistic(conservative) assumptions for the binary properties and current sensitivity thresholds. For massive stars ($geq 10$ M$_{odot}$) in particular, we find $f_{rm OB}^{rm true}leq 3.7%$ which sets a firm independent upper limit on the galactic neutron-star merger rate, $leq 7.2times 10^{-4}$ yr$^{-1}$. Ongoing and future projects such as the CHIME/pulsar program, MeerTime, HIRAX and ultimately the SKA, will significantly improve these constraints in the future.
The Early Gaia Data Release 3 (EDR3) provides precise astrometry for nearly 1.5 billion sources across the entire sky. A few tens of these are associated with neutron stars in the Milky Way and Magellanic Clouds. Here, we report on a search for EDR3
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving o
A single space-based gravitational wave detector will push the boundaries of astronomy and fundamental physics. Having a network of two or more detectors would significantly improve source localization. Here we consider how dual networks of space-bas
Quantum interference on the kagome lattice generates electronic bands with narrow bandwidth, called flat bands. Crystal structures incorporating this lattice can host strong electron correlations with non-standard ingredients, but only if these bands
When primed with only a handful of training samples, very large pretrained language models such as GPT-3, have shown competitive results when compared to fully-supervised fine-tuned large pretrained language models. We demonstrate that the order in w