ﻻ يوجد ملخص باللغة العربية
Quantum interference on the kagome lattice generates electronic bands with narrow bandwidth, called flat bands. Crystal structures incorporating this lattice can host strong electron correlations with non-standard ingredients, but only if these bands lie at the Fermi level. In the six compounds with the CoSn structure type (FeGe, FeSn, CoSn, NiIn, RhPb, and PtTl) the transition metals form a kagome lattice. The two iron variants are robust antiferromagnets so we focus on the latter four and investigate their thermodynamic and transport properties. We consider these results and calculated band structures to locate and characterize the flat bands in these materials. We propose that CoSn and RhPb deserve the communitys attention for exploring flat band physics.
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving o
CoSn is a Pauli paramagnet with relatively flat d-bands centered about 100 meV below the Fermi energy Ef. Single crystals of CoSn lightly doped with Fe, In, or Ni are investigated using x-ray and neutron scattering, magnetic susceptibility and magnet
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the obser
The Early Gaia Data Release 3 (EDR3) provides precise astrometry for nearly 1.5 billion sources across the entire sky. A few tens of these are associated with neutron stars in the Milky Way and Magellanic Clouds. Here, we report on a search for EDR3
Experimental advances in the fabrication and characterization of few-layer materials stacked at a relative twist of small angle have recently shown the emergence of flat energy bands. As a consequence electron interactions become relevant, providing