ﻻ يوجد ملخص باللغة العربية
New high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed $f(Q,T)$ gravity, where $Q$ is the non-metricity, and $T$ is the trace of the energy-momentum tensor. The investigation is carried out using a parameterized effective equation of state with two parameters, $m$ and $n$. We have also considered the linear form of $f(Q,T)= Q+bT$, where $b$ is constant. By constraining the model with the recently published 1048 Pantheon sample, we were able to find the best fitting values for the parameters $b$, $m$, and $n$. The model appears to be in good agreement with the observations. Finally, we analyzed the behavior of the deceleration parameter and equation of state parameter. The results support the feasibility of $f(Q,T)$ as a promising theory of gravity, illuminating a new direction towards explaining the Universes dark sector.
We are living in a golden age for experimental cosmology. New experiments with high accuracy precision are been used to constrain proposals of several theories of gravity, as it has been never done before. However, important roles to constrain new th
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally w
Cosmography is an ideal tool to investigate the cosmic expansion history of the Universe in a model-independent way. The equations of motion in modified theories of gravity are usually very complicated; cosmography may select practical models without
We derive the full set of field equations for the Metric-Affine version of the Myrzakulov gravity model and also extend this family of theories to a broader one. More specifically, we consider theories whose gravitational Lagrangian is given by $F(R,