ﻻ يوجد ملخص باللغة العربية
Cosmography is an ideal tool to investigate the cosmic expansion history of the Universe in a model-independent way. The equations of motion in modified theories of gravity are usually very complicated; cosmography may select practical models without imposing arbitrary choices a priori. We use the model-independent way to derive $f(z)$ and its derivatives up to fourth order in terms of measurable cosmographic parameters. We then fit those functions into the luminosity distance directly. We perform the MCMC analysis by considering three different sets of cosmographic functions. Using the largest supernovae Ia Pantheon sample, we derive the constraints on the Hubble constant $H_0$ and the cosmographic functions, and find that the former two terms in Taylor expansion of luminosity distance work dominantly in $f(Q)$ gravity.
A complete theory of gravity impels us to go beyond Einsteins General Relativity. One promising approach lies in a new class of teleparallel theory of gravity named $f(Q)$, where the nonmetricity $Q$ is responsible for the gravitational interaction.
The current interests in the universe motivate us to go beyond Einsteins General theory of relativity. One of the interesting proposals comes from a new class of teleparallel gravity named symmetric teleparallel gravity, i.e., $f(Q)$ gravity, where t
We systematically study the field equations of $f(mathbb Q)$ gravity for spherically symmetric and stationary metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine connection. In the Symmetric Te
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally w