ﻻ يوجد ملخص باللغة العربية
We are living in a golden age for experimental cosmology. New experiments with high accuracy precision are been used to constrain proposals of several theories of gravity, as it has been never done before. However, important roles to constrain new theories of gravity in a theoretical perspective are the energy conditions. Throughout this work, we carefully constrained some free parameters of two different families of $f(Q,T)$ gravity using different energy conditions. This theory of gravity combines the gravitation effects through the non-metricity scalar function $Q$, and manifestations from the quantum era of the Universe in the classical theory (due to the presence of the trace of the energy-momentum tensor $T$). Our investigation unveils the viability of $f(Q,T)$ gravity to describe the accelerated expansion our Universe passes through. Besides, one of our models naturally provides a phantom regime for dark energy and satisfies the dominant energy condition. The results here derived strength the viability of $f(Q,T)$ as a promising complete theory of gravity, lighting a new path towards the description of the dark sector of the Universe.
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
A complete theory of gravity impels us to go beyond Einsteins General Relativity. One promising approach lies in a new class of teleparallel theory of gravity named $f(Q)$, where the nonmetricity $Q$ is responsible for the gravitational interaction.
New high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed $f(Q,T)$ gravity, where $Q$ is the non-metricity, and $T$ is the trace of the e
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally w
Cosmography is an ideal tool to investigate the cosmic expansion history of the Universe in a model-independent way. The equations of motion in modified theories of gravity are usually very complicated; cosmography may select practical models without