ﻻ يوجد ملخص باللغة العربية
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally we also assume the universe to be dominated by pressure-less matter which yields a power law type scale factor of the form $% a(t)=c_{2}(At+c_{1})^{frac{1}{A}}$, where $A=dfrac{3(8pi +b)}{n(16pi +3b)% }$ and $c_{1}$ & $c_{2}$ are just integration constants. To investigate the cosmological viability of the model, constraints on the model parameters were imposed from the updated 57 points of Hubble data sets and 580 points of union 2.1 compilation supernovae data sets. We have thoroughly investigated the nature of geometrical dark energy mimicked by the parametrization of $f(Q,T)=mQ^{n}+bT$ with the assistance of statefinder diagnostic in ${s,r}$ and ${q,r}$ planes and also performed the $Om$ -diagnostic analysis. The present analysis makes it clear-cut that $f(Q,T)$ gravity can be promising in addressing the current cosmic acceleration and therefore a suitable alternative to the dark energy problem. Further studies in other cosmological areas are therefore encouraging to further investigate the viability of $f(Q,T)$ gravity.
The standard formulation of general relativity fails to describe some recent interests in the universe. It impels us to go beyond the standard formulation of gravity. The $f(Q)$ gravity theory is an interesting modified theory of gravity, where the g
$f(Q,T)$ gravity is a novel extension of the symmetric teleparallel gravity where the Lagrangian $L$ is represented through an arbitrary function of the nonmetricity $Q$ and the trace of the energy-momentum tensor $T$ cite{fqt}. In this work, we have
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
We are living in a golden age for experimental cosmology. New experiments with high accuracy precision are been used to constrain proposals of several theories of gravity, as it has been never done before. However, important roles to constrain new th
New high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed $f(Q,T)$ gravity, where $Q$ is the non-metricity, and $T$ is the trace of the e