ﻻ يوجد ملخص باللغة العربية
We improve our earlier upper bound on the numbers of antipodal pairs of points among $n$ points in ${mathbb{R}}^3$, to $2n^2/5+O(n^c)$, for some $c<2$. We prove that the minimal number of antipodal pairs among $n$ points in convex position in ${mathbb{R}}^d$, affinely spanning ${mathbb{R}}^d$, is $n + d(d - 1)/2 - 1$. Let ${underline{sa}}^s_d(n)$ be the minimum of the number of strictly antipodal pairs of points among any $n$ points in ${mathbb{R}}^d$, with affine hull ${mathbb{R}}^d$, and in strictly convex position. The value of ${underline{sa}}^s_d(n)$ was known for $d le 3$ and any $n$. Moreover, ${underline{sa}}^s_d(n) = lceil n/2rceil $ was known for $n ge 2d$ even, and $n ge 4d+1$ odd. We show ${underline{sa}}^s_d(n) = 2d$ for $2d+1 le n le 4d-1$ odd, we determine ${underline{sa}}^s_d(n)$ for $d=4$ and any $n$, and prove ${underline{sa}}^s_d(2d -1) = 3(d - 1)$. The cases $d ge 5 $ and $d+2 le n le 2d - 2$ remain open, but we give a lower and an upper bound on ${underline{sa}}^s_d(n)$ for them, which are of the same order of magnitude, namely $Theta left( (d-k)d right) $. We present a simple example of a strictly antipodal set in ${mathbb{R}}^d$, of cardinality const,$cdot 1.5874...^d$. We give simple proofs of the following statements: if $n$ segments in ${mathbb{R}}^3$ are pairwise antipodal, or strictly antipodal, then $n le 4$, or $n le 3$, respectively, and these are sharp. We describe also the cases of equality.
We investigate several antipodal spherical designs on whether we can choose half of the points, one from each antipodal pair, such that they are balanced at the origin. In particular, root systems of type A, D and E, minimal points of Leech lattice a
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors
Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r i
This paper proposes a new deep learning approach to antipodal grasp detection, named Double-Dot Network (DD-Net). It follows the recent anchor-free object detection framework, which does not depend on empirically pre-set anchors and thus allows more
An $r$-matching in a graph $G$ is a collection of edges in $G$ such that the distance between any two edges is at least $r$. A $2$-matching is also called an induced matching. In this paper, we estimate the maximum number of $r$-matchings in a tree o