ترغب بنشر مسار تعليمي؟ اضغط هنا

On the number of antipodal or strictly antipodal pairs of points in finite subsets of $mathbb{R}^d$, III

44   0   0.0 ( 0 )
 نشر من قبل Endre Makai Jr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We improve our earlier upper bound on the numbers of antipodal pairs of points among $n$ points in ${mathbb{R}}^3$, to $2n^2/5+O(n^c)$, for some $c<2$. We prove that the minimal number of antipodal pairs among $n$ points in convex position in ${mathbb{R}}^d$, affinely spanning ${mathbb{R}}^d$, is $n + d(d - 1)/2 - 1$. Let ${underline{sa}}^s_d(n)$ be the minimum of the number of strictly antipodal pairs of points among any $n$ points in ${mathbb{R}}^d$, with affine hull ${mathbb{R}}^d$, and in strictly convex position. The value of ${underline{sa}}^s_d(n)$ was known for $d le 3$ and any $n$. Moreover, ${underline{sa}}^s_d(n) = lceil n/2rceil $ was known for $n ge 2d$ even, and $n ge 4d+1$ odd. We show ${underline{sa}}^s_d(n) = 2d$ for $2d+1 le n le 4d-1$ odd, we determine ${underline{sa}}^s_d(n)$ for $d=4$ and any $n$, and prove ${underline{sa}}^s_d(2d -1) = 3(d - 1)$. The cases $d ge 5 $ and $d+2 le n le 2d - 2$ remain open, but we give a lower and an upper bound on ${underline{sa}}^s_d(n)$ for them, which are of the same order of magnitude, namely $Theta left( (d-k)d right) $. We present a simple example of a strictly antipodal set in ${mathbb{R}}^d$, of cardinality const,$cdot 1.5874...^d$. We give simple proofs of the following statements: if $n$ segments in ${mathbb{R}}^3$ are pairwise antipodal, or strictly antipodal, then $n le 4$, or $n le 3$, respectively, and these are sharp. We describe also the cases of equality.



قيم البحث

اقرأ أيضاً

69 - Eiichi Bannai , Da Zhao , Lin Zhu 2017
We investigate several antipodal spherical designs on whether we can choose half of the points, one from each antipodal pair, such that they are balanced at the origin. In particular, root systems of type A, D and E, minimal points of Leech lattice a nd the unique tight 7-design on $S^{22}$ are studied. We also study a half of an antipodal spherical design from the viewpoint of association schemes and spherical designs of harmonic index $T$.
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $Xsubseteqmathbb{R}^d$. In this paper, we focus on the case where $k$ is fixed and $dtoinfty$. In establishing bounds on $theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1choose 2}$ equiangular lines in $mathbb{R}^k$. Using this connection, we are able to pin down $theta(d,k)$ whenever $kin{1,2,3,7,23}$ and establish asymptotics for general $k$. The main tool is an upper bound on $mathbb{E}_{x,ysimmu}|langle x,yrangle|$ whenever $mu$ is an isotropic probability mass on $mathbb{R}^k$, which may be of independent interest. Our results translate naturally to the analogous question in $mathbb{C}^d$. In this case, the question relates to the existence of systems of $k^2$ equiangular lines in $mathbb{C}^k$, also known as SIC-POVM in physics literature.
Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r i n (0,2]$. For every $p in (1,infty)$, denote by $W_{p}^{1}(mathbb{R}^{n})$ the classical Sobolev space on $mathbb{R}^{n}$. We give an~intrinsic characterization of the restriction $W_{p}^{1}(mathbb{R}^{n})|_{S}$ of the space $W_{p}^{1}(mathbb{R}^{n})$ to~the set $S$ provided that $p > max{1,n-d}$. Furthermore, we prove the existence of a bounded linear operator $operatorname{Ext}:W_{p}^{1}(mathbb{R}^{n})|_{S} to W_{p}^{1}(mathbb{R}^{n})$ such that $operatorname{Ext}$ is right inverse for the usual trace operator. In particular, for $p > n-1$ we characterize the trace space of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ to the closure $overline{Omega}$ of an arbitrary open path-connected set~$Omega$. Our results extend those available for $p in (1,n]$ with much more stringent restrictions on~$S$.
This paper proposes a new deep learning approach to antipodal grasp detection, named Double-Dot Network (DD-Net). It follows the recent anchor-free object detection framework, which does not depend on empirically pre-set anchors and thus allows more generalized and flexible prediction on unseen objects. Specifically, unlike the widely used 5-dimensional rectangle, the gripper configuration is defined as a pair of fingertips. An effective CNN architecture is introduced to localize such fingertips, and with the help of auxiliary centers for refinement, it accurately and robustly infers grasp candidates. Additionally, we design a specialized loss function to measure the quality of grasps, and in contrast to the IoU scores of bounding boxes adopted in object detection, it is more consistent to the grasp detection task. Both the simulation and robotic experiments are executed and state of the art accuracies are achieved, showing that DD-Net is superior to the counterparts in handling unseen objects.
An $r$-matching in a graph $G$ is a collection of edges in $G$ such that the distance between any two edges is at least $r$. A $2$-matching is also called an induced matching. In this paper, we estimate the maximum number of $r$-matchings in a tree o f fixed order. We also prove that the $n$-vertex path has the maximum number of induced matchings among all $n$-vertex trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا