ترغب بنشر مسار تعليمي؟ اضغط هنا

Double-Dot Network for Antipodal Grasp Detection

213   0   0.0 ( 0 )
 نشر من قبل Yao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a new deep learning approach to antipodal grasp detection, named Double-Dot Network (DD-Net). It follows the recent anchor-free object detection framework, which does not depend on empirically pre-set anchors and thus allows more generalized and flexible prediction on unseen objects. Specifically, unlike the widely used 5-dimensional rectangle, the gripper configuration is defined as a pair of fingertips. An effective CNN architecture is introduced to localize such fingertips, and with the help of auxiliary centers for refinement, it accurately and robustly infers grasp candidates. Additionally, we design a specialized loss function to measure the quality of grasps, and in contrast to the IoU scores of bounding boxes adopted in object detection, it is more consistent to the grasp detection task. Both the simulation and robotic experiments are executed and state of the art accuracies are achieved, showing that DD-Net is superior to the counterparts in handling unseen objects.



قيم البحث

اقرأ أيضاً

Reliable robotic grasping in unstructured environments is a crucial but challenging task. The main problem is to generate the optimal grasp of novel objects from partial noisy observations. This paper presents an end-to-end grasp detection network ta king one single-view point cloud as input to tackle the problem. Our network includes three stages: Score Network (SN), Grasp Region Network (GRN), and Refine Network (RN). Specifically, SN regresses point grasp confidence and selects positive points with high confidence. Then GRN conducts grasp proposal prediction on the selected positive points. RN generates more accurate grasps by refining proposals predicted by GRN. To further improve the performance, we propose a grasp anchor mechanism, in which grasp anchors with assigned gripper orientations are introduced to generate grasp proposals. Experiments demonstrate that REGNet achieves a success rate of 79.34% and a completion rate of 96% in real-world clutter, which significantly outperforms several state-of-the-art point-cloud based methods, including GPD, PointNetGPD, and S4G. The code is available at https://github.com/zhaobinglei/REGNet_for_3D_Grasping.
93 - Wei Wei , Yongkang Luo , Fuyu Li 2021
Object grasping in cluttered scenes is a widely investigated field of robot manipulation. Most of the current works focus on estimating grasp pose from point clouds based on an efficient single-shot grasp detection network. However, due to the lack o f geometry awareness of the local grasping area, it may cause severe collisions and unstable grasp configurations. In this paper, we propose a two-stage grasp pose refinement network which detects grasps globally while fine-tuning low-quality grasps and filtering noisy grasps locally. Furthermore, we extend the 6-DoF grasp with an extra dimension as grasp width which is critical for collisionless grasping in cluttered scenes. It takes a single-view point cloud as input and predicts dense and precise grasp configurations. To enhance the generalization ability, we build a synthetic single-object grasp dataset including 150 commodities of various shapes, and a multi-object cluttered scene dataset including 100k point clouds with robust, dense grasp poses and mask annotations. Experiments conducted on Yumi IRB-1400 Robot demonstrate that the model trained on our dataset performs well in real environments and outperforms previous methods by a large margin.
Grasp detection with consideration of the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection al gorithm named ROI-GD is proposed to provide a feasible solution to this problem based on Region of Interest (ROI), which is the region proposal for objects. ROI-GD uses features from ROIs to detect grasps instead of the whole scene. It has two stages: the first stage is to provide ROIs in the input image and the second-stage is the grasp detector based on ROI features. We also contribute a multi-object grasp dataset, which is much larger than Cornell Grasp Dataset, by labeling Visual Manipulation Relationship Dataset. Experimental results demonstrate that ROI-GD performs much better in object overlapping scenes and at the meantime, remains comparable with state-of-the-art grasp detection algorithms on Cornell Grasp Dataset and Jacquard Dataset. Robotic experiments demonstrate that ROI-GD can help robots grasp the target in single-object and multi-object scenes with the overall success rates of 92.5% and 83.8% respectively.
205 - Yiming Li , Tao Kong , Ruihang Chu 2021
Grasping in cluttered scenes has always been a great challenge for robots, due to the requirement of the ability to well understand the scene and object information. Previous works usually assume that the geometry information of the objects is availa ble, or utilize a step-wise, multi-stage strategy to predict the feasible 6-DoF grasp poses. In this work, we propose to formalize the 6-DoF grasp pose estimation as a simultaneous multi-task learning problem. In a unified framework, we jointly predict the feasible 6-DoF grasp poses, instance semantic segmentation, and collision information. The whole framework is jointly optimized and end-to-end differentiable. Our model is evaluated on large-scale benchmarks as well as the real robot system. On the public dataset, our method outperforms prior state-of-the-art methods by a large margin (+4.08 AP). We also demonstrate the implementation of our model on a real robotic platform and show that the robot can accurately grasp target objects in cluttered scenarios with a high success rate. Project link: https://openbyterobotics.github.io/sscl
The reliability of grasp detection for target objects in complex scenes is a challenging task and a critical problem that needs to be solved urgently in practical application. At present, the grasp detection location comes from searching the feature space of the whole image. However, the cluttered background information in the image impairs the accuracy of grasping detection. In this paper, a robotic grasp detection algorithm named MASK-GD is proposed, which provides a feasible solution to this problem. MASK is a segmented image that only contains the pixels of the target object. MASK-GD for grasp detection only uses MASK features rather than the features of the entire image in the scene. It has two stages: the first stage is to provide the MASK of the target object as the input image, and the second stage is a grasp detector based on the MASK feature. Experimental results demonstrate that MASK-GDs performance is comparable with state-of-the-art grasp detection algorithms on Cornell Datasets and Jacquard Dataset. In the meantime, MASK-GD performs much better in complex scenes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا