ﻻ يوجد ملخص باللغة العربية
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $Xsubseteqmathbb{R}^d$. In this paper, we focus on the case where $k$ is fixed and $dtoinfty$. In establishing bounds on $theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1choose 2}$ equiangular lines in $mathbb{R}^k$. Using this connection, we are able to pin down $theta(d,k)$ whenever $kin{1,2,3,7,23}$ and establish asymptotics for general $k$. The main tool is an upper bound on $mathbb{E}_{x,ysimmu}|langle x,yrangle|$ whenever $mu$ is an isotropic probability mass on $mathbb{R}^k$, which may be of independent interest. Our results translate naturally to the analogous question in $mathbb{C}^d$. In this case, the question relates to the existence of systems of $k^2$ equiangular lines in $mathbb{C}^k$, also known as SIC-POVM in physics literature.
In this paper we investigate combinatorial constructions for $w$-cyclic holely group divisible packings with block size three (briefly by $3$-HGDPs). For any positive integers $u,v,w$ with $uequiv0,1~(bmod~3)$, the exact number of base blocks of a ma
We investigate several antipodal spherical designs on whether we can choose half of the points, one from each antipodal pair, such that they are balanced at the origin. In particular, root systems of type A, D and E, minimal points of Leech lattice a
We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous
We investigate perfect codes in $mathbb{Z}^n$ under the $ell_p$ metric. Upper bounds for the packing radius $r$ of a linear perfect code, in terms of the metric parameter $p$ and the dimension $n$ are derived. For $p = 2$ and $n = 2, 3$, we determine
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same