ﻻ يوجد ملخص باللغة العربية
We investigate several antipodal spherical designs on whether we can choose half of the points, one from each antipodal pair, such that they are balanced at the origin. In particular, root systems of type A, D and E, minimal points of Leech lattice and the unique tight 7-design on $S^{22}$ are studied. We also study a half of an antipodal spherical design from the viewpoint of association schemes and spherical designs of harmonic index $T$.
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors
We improve our earlier upper bound on the numbers of antipodal pairs of points among $n$ points in ${mathbb{R}}^3$, to $2n^2/5+O(n^c)$, for some $c<2$. We prove that the minimal number of antipodal pairs among $n$ points in convex position in ${mathb
The multicolor Ramsey number problem asks, for each pair of natural numbers $ell$ and $t$, for the largest $ell$-coloring of a complete graph with no monochromatic clique of size $t$. Recent works of Conlon-Ferber and Wigderson have improved the long
We generalize valuations on polyhedral cones to valuations on fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion-restriction invariants. In particular, we define a characteri
In this paper we consider the effect of symmetry on the rigidity of bar-joint frameworks, spherical frameworks and point-hyperplane frameworks in $mathbb{R}^d$. In particular we show that, under forced or incidental symmetry, infinitesimal rigidity f