ﻻ يوجد ملخص باللغة العربية
The emergence of two-dimensional (2D) magnetic crystals and moire engineering has opened the door for devising new magnetic ground states via competing interactions in moire superlattices. Although a suite of interesting phenomena, including multi-flavor magnetic states, noncollinear magnetic states, moire magnon bands and magnon networks, has been predicted, nontrivial magnetic ground states in twisted bilayer magnetic crystals have yet to be realized. Here, by utilizing the stacking-dependent interlayer exchange interactions in CrI3, we demonstrate in small-twist-angle bilayer CrI3 a noncollinear magnetic ground state. It consists of both antiferromagnetic (AF) and ferromagnetic (FM) domains and is a result of the competing interlayer AF coupling in the monoclinic stacking regions of the moire superlattice and the energy cost for forming AF-FM domain walls. Above the critical twist angle of ~ 3{deg}, the noncollinear state transitions abruptly to a collinear FM ground state. We further show that the noncollinear magnetic state can be controlled by gating through the doping-dependent interlayer AF interaction. Our results demonstrate the possibility of engineering moire magnetism in twisted bilayer magnetic crystals, as well as gate-voltage-controllable high-density magnetic memory storage.
Evidence of flat-band magnetism and half-metallicity in compressed twisted bilayer graphene is provided with first-principles calculations. We show that dynamic band-structure engineering in twisted bilayer graphene is possible by controlling the che
Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking
Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI3 is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose
Two-dimensional (2D) ferromagnetic (FM) semiconductors with high Curie temperature have long been pursued for electronic and spintronic applications. Here we provide a general strategy to achieve robust FM state in bilayer CrI3 of the monoclinic stac
Twisted van der Waals bilayers provide an ideal platform to study the electron correlation in solids. Of particular interest is the 30 degree twisted bilayer honeycomb lattice system, which possesses an incommensurate moire pattern and uncommon elect