ﻻ يوجد ملخص باللغة العربية
Evidence of flat-band magnetism and half-metallicity in compressed twisted bilayer graphene is provided with first-principles calculations. We show that dynamic band-structure engineering in twisted bilayer graphene is possible by controlling the chemical composition with extrinsic doping, the interlayer coupling strength with pressure, and the magnetic ordering with external electric field. By varying the rotational order and reducing the interlayer separation an unbalanced distribution of charge density resulting in the spontaneous apparition of localized magnetic moments without disrupting the structural integrity of the bilayer. Weak exchange correlation between magnetic moments is estimated in large unit cells. External electric field switches the local magnetic ordering from ferromagnetic to anti-ferromagnetic. Substitutional doping shifts the chemical potential of one spin distribution and leads to half-metallicity. Flakes of compressed twisted bilayer graphene exhibit spontaneous magnetization, demonstrating that correlation between magnetic moments is not a necessary condition for their formation.
We discuss twisted bilayer graphene (TBG) based on a theorem of flat band ferromagnetism put forward by Mielke and Tasaki. According to this theorem, ferromagnetism occurs if the single particle density matrix of the flat band states is irreducible a
The dominance of Coulomb interactions over kinetic energy of electrons in narrow, non-trivial moir{e} bands of magic-angle twisted bilayer graphene (TBG) gives rise to a variety of correlated phases such as correlated insulators, superconductivity, o
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp
Magic angle twisted bilayer graphene has emerged as a powerful platform for studying strongly correlated electron physics, owing to its almost dispersionless low-energy bands and the ability to tune the band filling by electrostatic gating. Technique
Atomic defects have a significant impact in the low-energy properties of graphene systems. By means of first-principles calculations and tight-binding models we provide evidence that chemical impurities modify both the normal and the superconducting