ترغب بنشر مسار تعليمي؟ اضغط هنا

Stacking tunable interlayer magnetism in bilayer CrI3

69   0   0.0 ( 0 )
 نشر من قبل Wei Ji
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking orders that are energetically comparable but may significantly differ in terms of electronic structures, e.g. magnetism. Inspired by several recent experiments showing interlayer anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling results from a new stacking order with the C2/m space group symmetry, rather than the graphene-like one with R3 as previously believed. Moreover, we demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are governed by two different mechanisms, namely ferromagnetic super-exchange and direct-exchange interactions, which are largely decoupled because of their significant difference in strength at the strong- and weak-interaction limits. This allows the much weaker interlayer magnetic coupling to be more feasibly tuned by stacking orders solely. Given the fact that interlayer magnetic properties can be altered by changing crystal structure with different stacking orders, our work opens a new paradigm for tuning interlayer magnetic properties with the freedom of stacking order in two dimensional layered materials.



قيم البحث

اقرأ أيضاً

Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here we apply hydrostatic pressure up to 2 GPa to modify the stacking order in a prototype van der Waals magnetic insulator CrI3. We observe an irreversible interlayer antiferromagnetic (AF) to ferromagnetic (FM) transition in atomically thin CrI3 by magnetic circular dichroism and electron tunneling measurements. The effect is accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer AF coupling energy can be tuned up by nearly 100% by pressure. Our experiment reveals interlayer FM coupling, which is the established ground state in bulk CrI3, but never observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations and suggests a route towards nanoscale magnetic textures by moire engineering.
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic light scattering or electron-energy-loss spectroscopy.
The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.
Two-dimensional (2D) transition-metal oxide perovskites greatly expand the field of available 2D multifunctional material systems. Here, based on density functional theory calculations, we predicted the presence of ferromagnetism orders accompanying with an insulator-metal phase transition in bilayer $KNbO_{3}$ and $KTaO_{3}$ by applying strain engineering and/or external electric field. Our results will contribute to the applications of few-layer transition metal oxide perovskites in the emerging spintronics and straintronics.
Aiming to clarify the mechanisms governing the interlayer magnetic coupling, we have investigated the stacking energy and interlayer magnetism of bilayer CrBr$_3$ systemically. The magnetic ground states of bilayer CrBr$_3$ with different R-type and H-type stacking orders are established, which is found to be in good agreement with recent experiment (Science $mathbf{366}$,983(2019)).Further analyses indicate that the stacking energy is mainly determined by the Coulomb interaction between the interlayer nearest-neighbor Br-Br atoms. While interlayer magnetism can be understood by a competition between super-super-exchange interactions involving $t_{2g}$-$t_{2g}$ and $t_{2g}$-$e_g$ orbitals and semi-covalent exchange interactions of $e_g$-$e_g$ orbitals. Our studies give an insightful understanding for stacking order and interlayer magnetism of bilayer CrBr$_3$, which should be useful to understand quantum confinement effect of other layered magnets in two-dimensional limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا