ﻻ يوجد ملخص باللغة العربية
The solar wind transients propagating out in the inner heliosphere can be observed in white-light images from Heliospheric Imager-1 (HI1), an instrument of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on board the Solar Terrestrial Relations Observatory (STEREO), from two perspectives. The spatial velocity distribution inside solar wind transients is key to understanding their dynamic evolution processes. We generated a velocity map of transients in 3D space based on 2D white-light images and used it to estimate the expansion rate as well as some kinematic properties of solar wind transients. Based on the recently developed correlation-aided reconstruction (CORAR) method in our previous work, which can recognize and locate 3D solar wind transients from STEREO/HI1 image data, we further developped a new technique for deriving the spatial distribution of the radial velocities of the most pronounced features inside solar wind transients. The technique was applied to events including a coronal mass ejection (CME) and three small-scale transients, so-called blobs, observed by HI1 on 3-4 April 2010 to reconstruct their radial velocity maps. The results match the forward-modeling results, simulations, and in situ observations at $1$ AU fairly well. According to the obtained spatial distributions of height and radial velocity of the CME, we analyzed the self-similarity of the radial expansion of the CME ejecta. The dimensionless radial expansion rate of the northern and middle parts of the CME ejecta varies in the range of 0.7 - 1.0 at heliocentric distance between 25 Rs and 55Rs and the rate of the southern part in the range of 0.3 - 0.5, suggesting that the CME structure was distorted and shaped by the ambient solar wind. The technique we developed is expected to be applied to more events.
The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic stability and evolution of nonlinear force-free f
To make progress on the open questions on CME/CIR propagation, their interactions and the role and nature of the ambient solar wind, we need spatially resolved coverage of the inner heliosphere -- both in-situ and (critically) imaging -- at temporal
We report analysis of sub-Alfvenic magnetohydrodynamic (MHD) perturbations in the low-b{eta} radial-field solar wind using the Parker Solar Probe spacecraft data from 31 October to 12 November 2018. We calculate wave vectors using the singular value
A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (ISOIS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second peri
We analyze in situ measurements of solar wind velocity obtained by Advanced Composition Explorer (ACE) spacecraft and Helios spacecraft during the years 1998-2012 and 1975-1983 respectively. The data belong to mainly solar cycle 23 (1996-2008) and so