ترغب بنشر مسار تعليمي؟ اضغط هنا

Visibility graph analysis of solar wind velocity

131   0   0.0 ( 0 )
 نشر من قبل Vinita Suyal
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze in situ measurements of solar wind velocity obtained by Advanced Composition Explorer (ACE) spacecraft and Helios spacecraft during the years 1998-2012 and 1975-1983 respectively. The data belong to mainly solar cycle 23 (1996-2008) and solar cycle 21 (1976-1986) respectively. We use Directed Horizontal Visibility graph (DHVg) algorithm and estimate a graph functional, namely, the degree distance (D) as the Kullback-Leibler divergence (KLD) argument to understand time irreversibility of solar wind time series. We estimate this degree distance irreversibility parameter for these time series at different phases of solar activity cycle. Irreversibility parameter is first established for known dynamical data and then applied for solar wind velocity time series. It is observed that irreversibility in solar wind velocity fluctuations show similar behaviour at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover it changes over the different phases of solar activity cycle.



قيم البحث

اقرأ أيضاً

We report analysis of sub-Alfvenic magnetohydrodynamic (MHD) perturbations in the low-b{eta} radial-field solar wind using the Parker Solar Probe spacecraft data from 31 October to 12 November 2018. We calculate wave vectors using the singular value decomposition method and separate the MHD perturbations into three types of linear eigenmodes (Alfven, fast, and slow modes) to explore the properties of the sub-Alfvenic perturbations and the role of compressible perturbations in solar wind heating. The MHD perturbations there show a high degree of Alfvenicity in the radial-field solar wind, with the energy fraction of Alfven modes dominating (~45%-83%) over those of fast modes (~16%-43%) and slow modes (~1%-19%). We present a detailed analysis of a representative event on 10 November 2018. Observations show that fast modes dominate magnetic compressibility, whereas slow modes dominate density compressibility. The energy damping rate of compressible modes is comparable to the heating rate, suggesting the collisionless damping of compressible modes could be significant for solar wind heating. These results are valuable for further studies of the imbalanced turbulence near the Sun and possible heating effects of compressible modes at MHD scales in low-b{eta} plasma.
We analyze time series data of the fluctuations of slow solar wind velocity using rank order statistics. We selected a total of 18 datasets measured by the Helios spacecraft at a distance of 0.32 AU from the sun in the inner heliosphere. The datasets correspond to the years 1975-1982 and cover the end of the solar activity cycle 20 to the middle of the activity cycle 21. We first apply rank order statistics to time series from known nonlinear systems and then extend the analysis to the solar wind data. We find that the underlying dynamics governing the solar wind velocity remains almost unchanged during an activity cycle. However, during a solar activity cycle the fluctuations in the slow solar wind time series increase just before the maximum of the activity cycle
In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons and, minor ions extending from $0.3$ AU to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of $< 1.1 R_{odot}$. Analysis of Fe, Si, and Mg spectral lines reveal a peaked line-shape core and broad wings that can be characteristed by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of $kappaapprox1.9-2.5$, indicating either (a) ion populations far from thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately $0.04$ AU ($8.5$ solar radii).
216 - Kejun Li , W. Feng 2019
Over 54 years of hourly mean value of solar wind velocity from 27 Nov. 1963 to 31 Dec. 2017 are used to investigate characteristics of the rotation period of solar wind through auto-correlation analysis. Solar wind of high velocity is found to rotate faster than low-velocity wind, while its rotation rate increases with velocity increasing, but in contrast for solar wind of low velocity, its rotation rate decreases with velocity increasing. Our analysis shows that solar wind of a higher velocity statistically possesses a faster rotation rate for the entire solar wind. The yearly rotation rate of solar wind velocity does not follow the Schwable cycle, but it is significantly negatively correlated to yearly sunspot number when it leads by 3 years. Physical explanations are proposed to these findings.
232 - T. Laitinen 2015
To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a line ar fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of June 10 2000, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا