ﻻ يوجد ملخص باللغة العربية
We report analysis of sub-Alfvenic magnetohydrodynamic (MHD) perturbations in the low-b{eta} radial-field solar wind using the Parker Solar Probe spacecraft data from 31 October to 12 November 2018. We calculate wave vectors using the singular value decomposition method and separate the MHD perturbations into three types of linear eigenmodes (Alfven, fast, and slow modes) to explore the properties of the sub-Alfvenic perturbations and the role of compressible perturbations in solar wind heating. The MHD perturbations there show a high degree of Alfvenicity in the radial-field solar wind, with the energy fraction of Alfven modes dominating (~45%-83%) over those of fast modes (~16%-43%) and slow modes (~1%-19%). We present a detailed analysis of a representative event on 10 November 2018. Observations show that fast modes dominate magnetic compressibility, whereas slow modes dominate density compressibility. The energy damping rate of compressible modes is comparable to the heating rate, suggesting the collisionless damping of compressible modes could be significant for solar wind heating. These results are valuable for further studies of the imbalanced turbulence near the Sun and possible heating effects of compressible modes at MHD scales in low-b{eta} plasma.
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper,
We investigate the validity of Taylors Hypothesis (TH) in the analysis of Alfvenic fluctuations of velocity and magnetic fields in solar wind streams measured by Parker Solar Probe (PSP)~during the first four encounters. We use PSP velocity and magne
As fundamental parameters of the Sun, the Alfven radius and angular momentum loss determine how the solar wind changes from sub-Alfvenic to super-Alfvenic and how the Sun spins down. We present an approach to determining the solar wind angular moment
We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric d
The Kelvin-Helmholtz instability (KHI) is a nonlinear shear-driven instability that develops at the interface between shear flows in plasmas. KHI has been inferred in various astrophysical plasmas and has been observed in situ at the magnetospheric b