ترغب بنشر مسار تعليمي؟ اضغط هنا

The Science Case for the $4{pi}$ Perspective: A Polar/Global View for Studying the Evolution & Propagation of the Solar Wind and Solar Transients

91   0   0.0 ( 0 )
 نشر من قبل Angelos Vourlidas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To make progress on the open questions on CME/CIR propagation, their interactions and the role and nature of the ambient solar wind, we need spatially resolved coverage of the inner heliosphere -- both in-situ and (critically) imaging -- at temporal scales matching the evolutionary timescales of these phenomena (tens of minutes to hours), and from multiple vantage points. The polar vantage is uniquely beneficial because of the wide coverage and unique perspective it provides. The ultimate goal is to achieve full $4pi$ coverage of the solar surface and atmosphere by 2050.



قيم البحث

اقرأ أيضاً

70 - A. A. Vidotto 2021
How has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activi ty. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.
The solar wind transients propagating out in the inner heliosphere can be observed in white-light images from Heliospheric Imager-1 (HI1), an instrument of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on board the Solar Te rrestrial Relations Observatory (STEREO), from two perspectives. The spatial velocity distribution inside solar wind transients is key to understanding their dynamic evolution processes. We generated a velocity map of transients in 3D space based on 2D white-light images and used it to estimate the expansion rate as well as some kinematic properties of solar wind transients. Based on the recently developed correlation-aided reconstruction (CORAR) method in our previous work, which can recognize and locate 3D solar wind transients from STEREO/HI1 image data, we further developped a new technique for deriving the spatial distribution of the radial velocities of the most pronounced features inside solar wind transients. The technique was applied to events including a coronal mass ejection (CME) and three small-scale transients, so-called blobs, observed by HI1 on 3-4 April 2010 to reconstruct their radial velocity maps. The results match the forward-modeling results, simulations, and in situ observations at $1$ AU fairly well. According to the obtained spatial distributions of height and radial velocity of the CME, we analyzed the self-similarity of the radial expansion of the CME ejecta. The dimensionless radial expansion rate of the northern and middle parts of the CME ejecta varies in the range of 0.7 - 1.0 at heliocentric distance between 25 Rs and 55Rs and the rate of the southern part in the range of 0.3 - 0.5, suggesting that the CME structure was distorted and shaped by the ambient solar wind. The technique we developed is expected to be applied to more events.
We comparatively studied the long-term variation (1992-2017) in polar brightening observed with the Nobeyama Radioheliograph, the polar solar wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal hole distribution computed by potential field calculations of the solar corona using synoptic magnetogram data obtained at Kitt Peak National Solar Observatory. First, by comparing the solar wind velocity (V) and the brightness temperature (T_b) in the polar region, we found good correlation coefficients (CCs) between V and T_b in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V-T_b relationship as V =12.6 (T_b-10,667)^{1/2}+432. We also confirmed that the CC of V-T_b is higher than those of V-B and V-B/f, where B and f are the polar magnetic field strength and magnetic flux expansion rate, respectively. These results indicate that T_b is a more direct parameter than B or B/f for expressing solar wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole (A). As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between T_b and A is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V-T_b is explained by V-A. In addition, by considering the anti-correlation between A and f found in a previous study, we suggest that the V-T_b relationship is another expression of the Wang-Sheeley relationship (V-1/f) in the polar regions.
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed field corona, implying that it originates from the continuous opening and closing of flux at the b oundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~ 60{circ}, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model.
The Sun is the most constrained and well-studied of all stars. As a consequence, the physical ingredients entering solar models are used as a reference to study all other stars observed in the Universe. However, our understanding of the solar structu re is still imperfect, as illustrated by the current debate on the heavy element abundances in the Sun. We wish to provide additional information on the solar structure by carrying out structural
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا