ﻻ يوجد ملخص باللغة العربية
A family $mathcal{F}$ of elliptic curves defined over number fields is said to be typically bounded in torsion if the torsion subgroups $E(F)[$tors$]$ of those elliptic curves $E_{/F}in mathcal{F}$ can be made uniformly bounded after removing from $mathcal{F}$ those whose number field degrees lie in a subset of $mathbb{Z}^+$ with arbitrarily small upper density. For every number field $F$, we prove unconditionally that the family $mathcal{E}_F$ of elliptic curves over number fields with $F$-rational $j$-invariants is typically bounded in torsion. For any integer $dinmathbb{Z}^+$, we also strengthen a result on typically bounding torsion for the family $mathcal{E}_d$ of elliptic curves over number fields with degree $d$ $j$-invariants.
In this paper, we explicitly classify the minimal discriminants of all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion subgroup. This is done by considering various parameterized families of elliptic curves with the property that they parame
By Mazurs Torsion Theorem, there are fourteen possibilities for the non-trivial torsion subgroup $T$ of a rational elliptic curve. For each $T$, we consider a parameterized family $E_T$ of elliptic curves with the property that they parameterize all
We present rank-record breaking elliptic curves having torsion subgroups Z/2Z, Z/3Z, Z/4Z, Z/6Z, and Z/7Z.
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of
We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie