ترغب بنشر مسار تعليمي؟ اضغط هنا

Good elliptic curves with a specified torsion subgroup

87   0   0.0 ( 0 )
 نشر من قبل Alexander Barrios
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of $E$. In this article, we generalize Massers Theorem on the existence of infinitely many good elliptic curves with full $2$-torsion. Specifically, we prove via constructive methods that for each of the fifteen torsion subgroups $T$ allowed by Mazurs Torsion Theorem, there are infinitely many good elliptic curves $E$ with $E!left(mathbb{Q}right) _{text{tors}}cong T$.



قيم البحث

اقرأ أيضاً

140 - Igor Nikolaev 2013
Let G(A) be an AF-algebra given by periodic Bratteli diagram with the incidence matrix A in GL(n, Z). For a given polynomial p(x) in Z[x] we assign to G(A) a finite abelian group Z^n/p(A) Z^n. It is shown that if p(0)=1 or p(0)=-1 and Z[x]/(p(x)) is a principal ideal domain, then Z^n/p(A) Z^n is an invariant of the strong stable isomorphism class of G(A). For n=2 and p(x)=x-1 we conjecture a formula linking values of the invariant and torsion subgroup of elliptic curves with complex multiplication.
Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m=o(sqrt(p)/(log p)^4), outputs an elliptic curve E over the finite field F_p for which the cardinality of E(F_p) is divisible by m. The running time of the algorithm is mp^(1/2+o(1)), and this leads to more efficient constructions of rational functions over F_p whose image is small relative to p. We also give an unconditional version of the algorithm that works for almost all primes p, and give a probabilistic algorithm with subexponential time complexity.
We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie ntly generate elliptic curves with nontrivial N-torsion by searching for affine points on X_1(N)(F_q), and we give a fast method for generating curves with (or without) a point of order 4N using X_1(2N).
In this paper, we explicitly classify the minimal discriminants of all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion subgroup. This is done by considering various parameterized families of elliptic curves with the property that they parame terize all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion point. We follow this by giving admissible change of variables, which give a global minimal model for $E$. We also provide necessary and sufficient conditions on the parameters of these families to determine the primes at which $E$ has additive reduction. In addition, we use these parameterized families to give constructive proofs of special cases of results due to Frey and Flexor-Oesterl{e} pertaining to the primes at which an elliptic curve over a number field $K$ with a non-trivial $K$-torsion point can have additive reduction.
By Mazurs Torsion Theorem, there are fourteen possibilities for the non-trivial torsion subgroup $T$ of a rational elliptic curve. For each $T$, we consider a parameterized family $E_T$ of elliptic curves with the property that they parameterize all elliptic curves $E/mathbb{Q}$ which contain $T$ in their torsion subgroup. Using these parameterized families, we explicitly classify the N{e}ron type, the conductor exponent, and the local Tamagawa number at each prime $p$ where $E/mathbb{Q}$ has additive reduction. As a consequence, we find all rational elliptic curves with a $2$-torsion or a $3$-torsion point that have global Tamagawa number~$1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا